Skip to main content
Log in

Do leaf surface characteristics affectAgrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]?

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The host range specificity ofAgrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree ofAgrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 andKangra jat showed higher rate (75%) ofAgrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves ofA. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower 8 (larger surface area covered by water droplet), higher phenol and wax content were more suitable forAgrobacterium infection. Caffeine fraction of tea promotedAgrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited bothAgrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing theAgrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable forAgrobacterium infection the first step inAgrobacterium-mediated genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby A M, Watson M D, Loake G J and Shaw C H 1988 Tiplasmid specific chemotaxis ofAgrobacterium tumefaciens C58C1 towardsvir inducing phenolic compounds and soluble factors from mono cotyledons and dicotyledonous plants;J. Bacteriol. 170 4181–4187

    PubMed  CAS  Google Scholar 

  • Barnes J D, Percy K E, Paul N D, Jones P, Mclaughlin C K, Mullineaux P M, Creissen G and Wellburn A R 1996 The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabaccum L.) leaf surface;J. Exp. Bot. 47 99–109

    Article  Google Scholar 

  • Biao X, Toru K, Jian X and Yongyan B 1998 Effect of polyphenol compounds in tea transformations;American Society of Plant Physiologists (Plant Biol.) Abstr. No. 314

  • Brewer C A, Smith W K and Vogelman T C 1991 Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets;Plant Cell Environ. 14 955–962

    Article  Google Scholar 

  • Chandler L D and Thomas C E 1991 Effect of leaf miner feeding activity on the incidence ofAlternaria leaf blight lesions on muskmelon leaves;Plant Disease 75 938–940

    Article  Google Scholar 

  • Christou P 1996 Transformation technology;Curr. Opinion Biotechnol. 4 135–141

    Article  Google Scholar 

  • Crisp D J 1963 Water proofing mechanisms in animals and plants; inWater proofing and water repellency (ed.) J L Molliet (Amsterdam: Elsevier) pp 416–481

    Google Scholar 

  • DeCleene M 1985 The susceptibility of monocotyledons toAgrobacterium tumefaciens;Phytopathology 113 82–89

    Google Scholar 

  • DeCleene M and DeLey J 1976 The host range of crown gall;Bot. Rev. 42 389–466

    Google Scholar 

  • Edwards P J 1992 Resistance and defence: the role of secondary plant substances; inPest and pathogens. Plant responses to foliar attack (ed.) P G Ayres (Lancaster: Bioscientific Publisher) pp 69–84

    Google Scholar 

  • Evans K J, Nyquist W E and Latin R X 1992 A model based on temperature and leaf wetness duration for establishment ofAlternaria leaf blight of muskmelon;Phytopathology 82 890–895

    Article  Google Scholar 

  • Hamilton C M, Frary A, Lewis C and Tanskley S D 1996 Stable transfer of intact high molecular weight DNA into plant chromosomes;Proc. Natl. Acad. Sci. USA 93 9975–9979

    Article  Google Scholar 

  • Hawes M C and Pueppke S G 1987 Correlation between binding ofAgrobacterium tumefaciens by root cap cells and susceptibility to crown gall;Plant Cell Rep. 6 287–290

    Article  Google Scholar 

  • Hawes M C, Robbs S L and Pueppke S G 1989 Use of a root tumorigenesis assay to detect genotypic variation in susceptibility of 34 cultivars ofPisum sativum;Plant Physiol. 90 180–184

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J B P, Remy S, Sauco V G, Swennen R and Sagi L 1999 Chemotactic movement and attachment ofAgrobacterium tumefaciens to banana cells and tissues;J. Plant Physiol. 155 245–250

    Google Scholar 

  • Ingelbrecht I, Breyne P, Vancomperonolle A, vanMontagu J M and Depicker A 1991 Transcriptional interferences in transgenic plants;Gene 109 239–242

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R A 1987 Assaying chimeric genes in plants: The GUS gene fusion system;Plant Mol. Biol. Rep. 5 389–405

    Article  Google Scholar 

  • Jenks M A, Tuttle H A, Eigenbrode S D and Feldmann K A 1995 Leaf epicuticular waxes of theEceriferum mutants inArabidopsis;Plant Physiol. 108 269–377

    Google Scholar 

  • Juniper B E and Jefree C E 1983Plant surfaces (London: Edward Arnold)

    Google Scholar 

  • Karageorgou P, Levizou E and Manetas Y 2002 The influence of drought, shade and availability of mineral nutrients on exudate phenolics ofDittrichia viscose;Flora 197 285–289

    Google Scholar 

  • Kato M, Mizuno K, Crozier A, Fujimura T and Ashihara H 2000 Caffeine synthase gene from tea leaves.Nature (London) 406 956–957

    Article  CAS  Google Scholar 

  • Kim K S, Taylor S E, Gleason M L and Koehler K J 2002 Model to enhance site specific estimation of leaf wetness duration;Plant Disease 86 179–185

    Article  Google Scholar 

  • Kumar N 2003Studies on recalcitrance of leaf explants to Agrobacterium mediated genetic transformation during the production of trans genic tea, M.Sc. thesis, Himachal Pradesh Krishi Viswavidyalay, Palampur

    Google Scholar 

  • Meidner H and Mansfield T A 1968Physiology of stomata (London: McGraw Hill)

    Google Scholar 

  • Mohamed M Z, Weersinghe D K and Wickremasinghe V 1986 Chemistry of tea (C. sinensis);SriLankan J. Tea Sci. 55 36–43

    Google Scholar 

  • Mondal T K, Bhattacharya A, Ahuja P S and Chand P K 2001 Transgenic tea (Camellia sinensis (L.) O. Kuntze cv. Kangra Jat) plants obtained byAgrobacterium mediated transformation of somatic embryos;Plant Cell Rep. 20 712–720

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F A 1962 A revised medium for rapid growth and bioassay with tobacco tissue cultures;Physiol. Plant 15 473–497

    Article  CAS  Google Scholar 

  • Nester E W, Gordon M P, Amasino R M and Yanofsky M F 1984 Crown gall: A molecular and physiological analysis;Annu. Rev. Plant Physiol. 35 387–413

    Article  CAS  Google Scholar 

  • Nesme X, Michel M F and Digat B 1987 Population heterogenecity ofAgrobacterium tumefaciens in galls ofPopulus L. from as single nursery;Appl. Environ. Microbiol. 53 655–659

    PubMed  CAS  Google Scholar 

  • Pandey S and Nagar P K 2002 Leaf surface wetness and morphological characteristics ofValeriana jatamansi grown under open and shade habitats;Biol. Planta. 45 291–294

    Article  Google Scholar 

  • Pandey S and Nagar P K 2003 Patterns of leaf surface wetness in some important medicinal and aromatic plants of Western Himalaya;Flora 198 349–357

    Google Scholar 

  • Percy K E, Cape J N, Jagels R and Simpson C J 1994Air pollutants and the leaf cuticle (Berlin: Springer Verlag)

    Google Scholar 

  • Preece T F and Dickinson C H Preece T F and Dickinson C H 1971 Ecology of leaf surface microorganisms (New York: Academic Press)

    Google Scholar 

  • Pueppke S G 1984 Plant microbe interactions; inPlant microbe interactions molecular and genetic perspectives (eds) T Kosuge and E W Nester (New York: John Willey) pp 215–216

    Google Scholar 

  • Reynolds K M, Madden L V, Richard D L and Ellis M A 1989 Splash dispersal ofPhytopthora cactorum from infected strawberry fruit by stimulated canopy drip;Phytopathol. 79 465–469

    Google Scholar 

  • Sandal I, Kumar A, Bhattacharya A, Ravindranath S D, Gulati A and Ahuja P S 2001A thermolabile caffeine fraction of tea leaves—A substitute of acetosyringone for Agrobacterium mediated genetic transformations (Patent filed in US and PCT)

  • Sandal I, Bhattacharya A, Kumar S and Ahuja P S 2002 Transgenic Tea (Camellia sinensis L O Kuntze);Xth IAPTC& B Congress. Plant Biotechnology 2002 and Beyond, June 23–28 2002, University of Florida, USA, AbstrNo. 1458

  • Sandal I 2003Transgenic tea, Ph. D. thesis, Guru Nanak Dev University, Amritsar

    Google Scholar 

  • Swain T and Hillis W E 1959 The phenolic constituents ofPrunus domesticus I. The quantitative analyses of phenolic constituents;J. Plant Sci. Food Agri. 10 63–68

    Article  CAS  Google Scholar 

  • Szymanski D B, Lloyd A M and Marks M D 2000 Progress in the molecular genetic analysis of trichome initiation and morphogenesis inArabidopsis;Trends Plant Sci. 5 80–84

    Article  Google Scholar 

  • Willmer C H 1983Stomata (New York: Longman)

    Google Scholar 

  • Zupan J R and Zambryski P 1995 Transfer of T-DNA fromAgrobacterium to the plant cell;Plant Physiol. 107 1041–1047

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subedar Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Pandey, S., Bhattacharya, A. et al. Do leaf surface characteristics affectAgrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]?. J Biosci 29, 309–317 (2004). https://doi.org/10.1007/BF02702613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702613

Keywords

Navigation