Skip to main content
Log in

Angiogenic potential of microvessel fragments established in three-dimensional collagen gels

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

During angiogenesis, the microvasculature displays both vessel remodeling and expansion under the control of both cellular and extracellular influences. We have evaluated the role of angiogenic and angiostatic molecules on angiogenesis in anin vitro model that more appropriately duplicates the cellular and extracellular components of this process. Freshly isolated microvessel fragments from rat adipose tissue (RFMF) were cultured within three-dimensional collagen I gels. These fragments were characterized at the time of isolation and were composed of vessel segments observed in the microvasculature of fatin situ (i.e., arterioles, venules, and capillaries). Fragments also exhibited characteristic ablumenally associated cells including smooth muscle cells and pericytes. Finally, fragments were encased in an extracellular matrix composed of collagen type IV and collagen type I/III. The elongation of microvascular elements was subsequently evaluated using morphologic and immunocytochemical techniques. The proliferation, migration, and elongation of cellular elements in microvessel fragments from rat adipose tissue was dependent on initial fragment density, matrix density, and required serum. Inclusion of endothelial cell growth factors to microvessel fragments from rat adipose tissue 3-D cultures resulted in the accelerated elongation of tube structures and the expression of von Willebrand factor in cells constituting these tubes. Molecules with reported angiostatic capacity (e.g., transforming growth factor and hydrocortisone) inhibited vessel tube elongation.

In vitro methods have been developed to evaluate numerous mechanisms associated with angiogenesis, including endothelial cell proliferation, migration, and phenotypic modulation. Microvascular endothelial cell fragments described in this study represent anin vitro population of cells that accurately duplicate thein vivo microcirculatory elements of fat. The proliferation of cells and elongation of microvascular elements subsequently observed in three-dimensional cultures provides anin vitro model of angiogenesis. Microvascular formation in this system results from pre-existing microvessel fragments unlike tube formation observed when cultured endothelial cells are placed in three-dimensional gels. This form of tube formation from cultured endothelium is more characteristic of vasculogenesis. Thus, the formation of microvascular elements from microvessel fragments provides the opportunity to examine the mechanisms regulating angiogenesis in anin vitro system amenable to precise experimental manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonelli-Orlidge, A.; Smith, S. R.; D'Amore, P. A. Influence of pericytes on capillary endothelial cell growth. Ann. Rev. Resp. Dis. 140:1129–1131; 1989.

    CAS  Google Scholar 

  2. Ausprunk, D. H.; Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14:53–65; 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Baird, A.; Bohlen, P. Fibroblast growth factors. In: Sporn, M. B.; Roberts, A. B., eds. Peptide growth factors and their receptors I. New York Springer-Verlag; 369–374; 1991.

    Google Scholar 

  4. Crum, R.; Szabo, S.; Folkman, J.: A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Enenstein, J.; Waleh, N. S.; Kramer, R. H. Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Exp. Cell. Res. 203:499–503; 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Folkman, J.; Haudenschild, C. Angiogenesis in vitro. Nature 288:551–556; 1981.

    Article  Google Scholar 

  7. Folkman, J.; Klagsbrun, M. Angiogenic factors. Science 235:442–447; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Form, D. M.; Pratt, B. M.; Madri, J. A. Endothelial cell proliferation during angiogenesis: in vitro modulation by basement membrane components. Lab. Invest. 55:521–530; 1986.

    PubMed  CAS  Google Scholar 

  9. Gabbiani, G.; Schmid, E.; Winter, S., et al. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific α-type actin. Proc. Natl. Acad. Sci. USA 78:298–302; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Gospodarowicz, D. Fibroblast growth factor and its involvement in developmental processes. Curr. Top. Dev. Biol. 24:57–93; 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Gross, J. L.; Moscatelli, D.; Jaffe, E. A., et al. Plasminogen activator and collagenase production by cultured capillary endothelial cells. J. Cell Biol. 95:974–981; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Gross, J. L.; Moscatelli, D.; Rifkin, D. B. Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc. Natl. Acad. Sci. USA 80:2623–2627; 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Herman, I. M.; D'Amore, P. A. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 101:43–52; 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Hudlicka, O. Development of microcirculation: capillary growth and adaptation. In: Handbook of physiology. Sec. 2. The cardiovascular system—microcirculation. Vol. IV. Bethesda, MD: American Physiological Society; 1984.

    Google Scholar 

  15. Hudlicka, O.; Myrhage, R.; Cooper, J. Growth of capillaries in adult skeletal muscle after chronic stimulation. Bibl. Anat. 15:508–509; 1977.

    PubMed  Google Scholar 

  16. Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Klein, S.; Giancotti, F. G.; Presta, M., et al. Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell. 4:973–982; 1993.

    PubMed  CAS  Google Scholar 

  18. Maca, R. D.; Fry, G. L.; Hoak, J. C.: The effects of glucocorticoids on cultured human endothelial cells. Br. J. Haematol. 38:501–509; 1978.

    PubMed  CAS  Google Scholar 

  19. Madri, J. A.; Dreyer, B.; Pitlick, F. A., et al. The collagenous components of the subendothelium: correlation of structure and function. Lab. Invest. 43:303–315; 1980.

    PubMed  CAS  Google Scholar 

  20. Madri, J. A.; Marx, M. Matrix composition, organization and soluble factors: modulators of microvascular endothelial cell differentiation in vitro. Kidney Int. 41:560–565; 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Madri, J. A.; Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34:85–91; 1986.

    PubMed  CAS  Google Scholar 

  22. Madri, J. A.; Pratt, B.; Tucker, A. Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106:1375–1384; 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Madri, J. A.; Williams, S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–156; 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Montessano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  Google Scholar 

  25. Moscatelli, D.; Jaffe, E. A.; Rifkin, D. B. Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell 20:343–351; 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Nehls, V.; Drenckhahn, D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry 99:1–12; 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Nicosia, R. F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. Lab. Invest. 63:115–121; 1990.

    PubMed  CAS  Google Scholar 

  28. Pratt, B. M.; Madri, J. A. Immunolocalization of type IV collagen and laminin in non-basement membrane structures of murine corneal stroma: a light and electron microscopic study. Lab. Invest. 52:650–656; 1985.

    PubMed  CAS  Google Scholar 

  29. Presta, M.; Moscatelli, D.; Joseph-Silverstein, J., et al. Purification from a human hepatoma cell line of a basic FGF like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration. Mol. Cell. Biol. 6:4060–4066; 1986.

    PubMed  CAS  Google Scholar 

  30. Shepro, D.; Morel, M. L. Pericyte physiology. FASEB J. 7:1031–1038; 1993.

    PubMed  CAS  Google Scholar 

  31. Shimada, T.; Kitamura, H.; Nakamura, M. Three-dimensional architecture of pericytes with special reference to their topographical relationship to microvascular beds. Arch. Histol. Cytol. 55:77–85; 1992.

    PubMed  Google Scholar 

  32. Shimmenti, L. A.; Horng-Chin, Y.; Madri, J. A., et al. Platelet endothelial cell adhesion molecule, PECAM-1, modulates cell migration. J. Cell. Physiol. 153:417–428; 1992.

    Article  Google Scholar 

  33. Slack, J. M.; Darlingtin, B. G.; Heath, J. K., et al. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326:197–200; 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Sporn, M. B.; Roberts, A. B. The multifunctional nature of peptide growth factors. Nature 332:217–219; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Stokes, C. L.; Rupnick, M. A.; Williams, S. K., et al. Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63:657–668; 1990.

    PubMed  CAS  Google Scholar 

  36. Stokes, C. L.; Weisz, P. B.; Williams, S. K., et al. Inhibition of microvascular endothelial cell migration by β-cyclodextrin tetradecasulfate and hydrocortisone. Microvasc. Res. 40:279–284; 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Wagner, R. C.; Hossler, F. E. SEM of capillary pericytes prepared by ultrasonic microdissection: evidence for the existence of a pericapillary syncytium. Anat. Rec. 234:249–254; 1992.

    Article  PubMed  CAS  Google Scholar 

  38. Wagner, R. C.; Matthews, M. The isolation and culture of capillary endothelium from epididymal fat. Microvasc. Res. 10:286–297; 1975.

    Article  PubMed  CAS  Google Scholar 

  39. Zetter, B. R. Migration of capillary endothelial cells is stimulated by tumor-derived factors. Nature 285:41–43; 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoying, J.B., Boswell, C.A. & Williams, S.K. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell.Dev.Biol.-Animal 32, 409–419 (1996). https://doi.org/10.1007/BF02723003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723003

Key words

Navigation