Skip to main content
Log in

Understanding critical material properties for solid dosage form design

  • Perspective
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

What is the role of standardized methods for determining the impact of material properties in pharmaceutical formulation and process development? In this Perspective article, we identify material properties that are potentially important in solid dosage form design, and we review approaches linking these properties to product specifications in dry granulation process development. We also assess the potential benefits that could be obtained by standardizing the methods for determining the impact of material properties of commonly used excipients and propose a program of research to achieve the desired goal of an efficient, science-based approach for incorporating material properties in solid dosage form design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolhuis, G.K. and Holzer, A.W. (1996) Lubricant sensitivity. InPharmaceutical Powder Compaction Technology (Alderborn, G. and Nistrom, C., eds), pp 517–560, Marcel Dekker.

  2. Wurster, D.E.et al. (1999) Prediction of the Hiestand bonding indices of binary powder mixtures from single-component bonding indices.Pharm. Dev. Technol. 4, 65–70.

    PubMed  CAS  Google Scholar 

  3. Fell, J.T. (1996) Compaction properties of binary mixtures. InPharmaceutical Powder Compaction Technology (Alderborn, G. and Nistrom, C., eds), pp 501–515, Marcel Dekker.

  4. Prescott, J.K. and Barnum, R.A. (2000) On powder flowability.Pharm Technol 24, 60–84.

    CAS  Google Scholar 

  5. Sheskey, P.J. and Dasbach, T.P. (1995) Evaluation of various polymers as dry binders in the preparation of an immediate-release tablet formulation by roller compaction,Pharm Technol, October, 98–112.

  6. Mollan, M.J. and Celik, M. (1996) The effects of lubrication on the compaction and post-compaction properties of directly compressible maltodextrins.Int. J. Pharm. 144, 1–9.

    Article  CAS  Google Scholar 

  7. Inghelbrecht, S. and Remon, J.P. (1998) Roller compaction and tableting of microcrystalline cellulose/drug mixtures.Int. J. Pharm. 161, 215–224.

    Article  CAS  Google Scholar 

  8. Mitchell, S.A.et al. (2003) A compaction process to enhance dissolution of poorly water-soluble drugs using hydroxypropyl methylcellulose.Int. J. Pharm. 250, 3–11.

    Article  PubMed  CAS  Google Scholar 

  9. Soares, L.A.L.et al. (2005) Dry granulation and compression of spraydried plant extracts.AAPS PharmSciTech 6, E359-E366.

    Article  PubMed  Google Scholar 

  10. Falzone, A.M.et al. (1992) Effects of changes in roller compactor parameters on granulations produced by compaction.Drug Dev. Ind. Pharm. 18, 469–489.

    Article  CAS  Google Scholar 

  11. Hervieu, P.et al. (1994) Granulation of pharmaceutical powders by compaction — An experimental study.Drug Dev. Ind. Pharm. 20, 65–74.

    Article  CAS  Google Scholar 

  12. Inghelbrecht, S. and Remon, J.P. (1998) The roller compaction of different types of lactose.Int. J. Pharm. 166, 135–144.

    Article  CAS  Google Scholar 

  13. Inghelbrecht, S.et al. (1997) Instrumentation of a roll compactor and the evaluation of the parameter settings by neural networks.Int. J. Pharm. 148, 103–115.

    Article  CAS  Google Scholar 

  14. Sheskey, P.et al. (2000), Roll compaction granulation of a controlled-release matrix tablet formulation containing HPMC — Effect of process scale-up on robustness of tablets, tablet stability, and predictedin vivo performance,Pharm Technol, November, 30–52.

  15. Rambali, B.et al. (2001) Influence of the roll compactor parameter settings and the compression pressure on the buccal bio-adhesive tablet properties.Int. J. Pharm. 220, 129–140.

    Article  PubMed  CAS  Google Scholar 

  16. Simon, O. and Guigon, P. (2003) Correlation between powder-packing properties and roll press compact heterogeneity.Powder Technol 130, 257–164.

    Article  CAS  Google Scholar 

  17. Johanson, J.R. (1965) A rolling theory for granular solids.J. Appl. Mech. 32, 842–848.

    CAS  Google Scholar 

  18. Jenike, A.W. and Shield, R.T. (1959) On the plastic flow of coulomb solids beyond original failure.J. Appl. Mech. 26, 599–602.

    Google Scholar 

  19. Bindhumadhavan, G.et al. (2005) Roll compaction of a pharmaceutical excipient: Experimental validation of rolling theory for granular solids.Chem. Eng. Sci. 60, 3891–3897.

    Article  CAS  Google Scholar 

  20. Dec, R.T.et al. (2003) Comparison of various modeling methods for analysis of powder compaction in rolling press.Powder Technol 130, 265–271.

    Article  CAS  Google Scholar 

  21. Sommer, K. and Hauser, G. (2003) Flow and compression properties of feed solids for roll-type presses and extrusion presses.Powder Technol 130, 272–276.

    Article  CAS  Google Scholar 

  22. Cunningham, J.C.et al. (2004) Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.J. Pharm. Sci. 93, 2022–2039.

    Article  PubMed  CAS  Google Scholar 

  23. Lewis, R.W.et al. (2005) A combined finite-discrete element method for simulating pharmaceutical powder tableting.Int J Numer Meth Eng 62, 853–869.

    Article  Google Scholar 

  24. Sanchez-Castillo, F.X.et al. (2003) Molecular dynamics simulations of granular compaction,Chemistry of Materials 15, 3417–3430.

    Article  CAS  Google Scholar 

  25. Rowe, R.C.et al., eds (2003)Handbook of pharmaceutical excipients, 4th ed, American Pharmaceutical Association.

  26. Thomson, G.H. and Larsen, A.H. (1996) DIPPR: Satisfying industry data needs.J. Chem. Eng. Data 41, 930–934.

    Article  CAS  Google Scholar 

  27. Kline, A.A.et al. (1998) An overview of compiling, critically evaluating, and delivering reliable physical property data from AIChE DIPPR Projects 911 and 912.Fluid Phase Equilibr 150, 421–428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kuriyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlinak, A.J., Kuriyan, K., Morris, K.R. et al. Understanding critical material properties for solid dosage form design. J Pharm Innov 1, 12–17 (2006). https://doi.org/10.1007/BF02784876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784876

Keywords

Navigation