Skip to main content
Log in

Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aspen wood substrates with varying degrees of deacetylation, xylan, and lignin removal have been prepared and submitted to enzymatic hydrolysis with a cellulase/hemicellulase preparation for an extended constant period of hydrolysis. Controlled deacetylation has been achieved by treating wood with various alkali metal hydroxide solutions, at various alkali/wood ratios. It has been found that samples with the same extent of deacetylation produce the same sugar yields upon enzymatic hydrolysis. Increased degree of deacetylation increases the yield of sugars obtained from enzymatic hydrolysis, all other compositional parameters held constant. The acetyl group removal is proportional to the stoichiometric relation between added base and wood acetyl content, i.e., the same number of milliequivalents of base/weight of wood remove the same extent of acetyl groups, regardless of the concentration of the base solution. No cation effects are found among Li, Na, and K alkali hydroxide solutions, suggesting that swelling is not as important a parameter as is the removal of the acetyl groups from the xylan backbone in determining the extent of hydrolyzability of the resulting sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soltes, E. J. (1983),Biomass Utilization, Cote, W. A., ed., Plenum, New York, pp. 271–298.

    Google Scholar 

  2. Sjostrom, E. (1985),Wood Chemistry: Fundamentals and Applications, Academic Press, NY.

    Google Scholar 

  3. Browning, B. L. (1963),The Chemistry of Wood, Interscience Publishers, New York.

    Google Scholar 

  4. Goldstein, I. S. (1983),Wood and Agricultural Residues: Research on Use for Feed, Fuel, and Chemicals, Soltes, E. J., ed., Academic, New York, pp. 315–328.

    Google Scholar 

  5. Kennedy, J. F. and Paterson, M. (1989),Cellulose Utilization, Innagaki, H. and Phillips, G. O., eds., Elsevier Applied Science, London, pp. 203–212.

    Google Scholar 

  6. Gharpuray, M. M., Fan, L. T., and Lee, Y. H. (1983),Wood and Agricultural Residues: Research on Use for Feed, Fuel, and Chemicals, Soltes, E. J., ed., Academic, New York, pp. 369–389.

    Google Scholar 

  7. Jeffries, T. W. (1987),Wood and Cellulosics, Kennedy, J. F., Phillips, G. O., and Williams, P. A., eds., Ellis Horwood, Chichester, pp. 213–242.

    Google Scholar 

  8. Schwald, W., Brownell, H. H., and Saddler, J. N. (1988),Wood Chem. Technol. 8, 543.

    Article  CAS  Google Scholar 

  9. Grohmann, K., Torget, R. and Hemmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  10. Gould, J. M. (1984),Biotechnol. Bioeng. 26, 46.

    Article  CAS  Google Scholar 

  11. Gould, J. M. (1984),Biotechnol. Bioeng. 27, 225–231.

    Article  Google Scholar 

  12. Kerley, M. S., Fahey, G. C., Berger, L. L., Gould, J. M., and Baker, F. L. (1985),Science 230, 820.

    Article  Google Scholar 

  13. Helmling, O., Arnold, G., Rzehak, H., Fahey, G. C., Berger, L. L., and Merchen, N. R. (1989),Biotechnol. Bioeng. 33, 237.

    Article  CAS  Google Scholar 

  14. Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. 23, 157.

    CAS  Google Scholar 

  15. Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., and Schroeder, H. A. (1989),Appl. Biochem. Biotech. 20, 45–61.

    Article  Google Scholar 

  16. Timell, T. E. (1967),Wood Science Technol. 1, 45.

    Article  CAS  Google Scholar 

  17. Sinner, M., Parameswaran, H., and Dietrichs, H. H. (1979),Adv. Chem. Ser. 181, 303–329.

    Article  Google Scholar 

  18. Browning, B. L. (1967),Methods of Wood Chemistry, Interscience, New York.

    Google Scholar 

  19. Soltes, E. J. (1989),Mechanisms of Plant Cell Wall Resistance to Attack by Polysaccharide Degrading Enzymes, Final Report, SERI subcontract XK-7-07031-9.

  20. Kong, F. (1990),Effect of Acetate and Other Cell Wall Components on Enzymatic Hydrolysis of Aspen Wood. M.S. Thesis, Forest Science, Texas A&M University, College Station, TX.

    Google Scholar 

  21. Baker, A. J., Millet, M. A., and Setter, L. D. (1975),Cellulose Technology Research, A. F. Turbak, ed. (American Chemical Society, Washignton, D.C.), pp. 75–105.

    Google Scholar 

  22. Rydholm, S. A. (1965),Pulping Processes, Interscience, New York, p. 95.

    Google Scholar 

  23. Soltes, E. J. (1980),Wood Chemistry Laboratory Manual, Department of Forest Science, Texas A&M University, College Station, TX.

    Google Scholar 

  24. Miller, G. L. (1959),Anal. Chem. 31, 427.

    Google Scholar 

  25. Chang, L., Chang, T., and Li, L. (1988),Methods of Biochemistry, Higher Education, Beijing, p. 9.

    Google Scholar 

  26. Yu, Q. (1985),Methods of Plant Physiology and Biochemistry, Higher Education, Beijing, p. 6.

    Google Scholar 

  27. Stamm, A. J. (1964),Wood and Cellulose Science, Ronald Press, New York, pp. 249–250.

    Google Scholar 

  28. Weast, R. C., Astle, M. J., and Beyer, W. H. (1985), eds.,CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, p. F-164.

    Google Scholar 

  29. Rowell, R. M. (1984),The Chemistry of Solid Wood, Rowell, R. M., ed., American Chemical Society, Washington D.C., pp. 175–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F., Engler, C.R. & Soltes, E.J. Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34, 23–35 (1992). https://doi.org/10.1007/BF02920531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920531

Index Entries

Navigation