Skip to main content
Log in

E1A: Tumor suppressor or oncogene? Preclinical and clinical investigations ofE1A gene therapy

  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

In the late 1980s, we have shown that theE1A gene can downregulate HER-2/neu overexpression, thus reversing the tumorigenic and metastatic phenotype. Further,E1A can function as a tumor suppressor gene by inducing apoptosis and inhibiting metastasis. At The University of Texas M. D. Anderson Cancer Center, we have been investigating the adenovirus type 5E1A gene as a potential therapeutic gene in breast and ovarian cancer since 1995 by using cationic liposome as gene delivery system. In this chapter, we recount our development ofE1A as a therapeutic gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berk AJ: Adenovirus promoters and E1A transactivation.Annu Rev Genet 20: 45–79, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Tooze J: DNA tumor viruses. Molecular biology of tumor viruses. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory, 1981.

    Google Scholar 

  3. Berger SL, Folk WR: Differential activation of RNA polymerase III-transcribed genes by the polyomavirus enhancer and the adenovirus E1A gene products.Nucleic Acids Res 13: 1413–1428, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Gaynor RB, Feldman LT, Berk AJ: Transcription of class III genes activated by viral immediate early proteins.Science 230: 447–450, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Hoeffler WK, Roeder RG: Enhancement of RNA polymerase III transcription by the E1A gene product of adenovirus.Cell 41: 955–963, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Berk AJ, Lee F, Harrison T,et al: Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs.Cell 17: 935–944, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Ferguson B, Jones N, Richter J,et al: Adenovirus E1a gene product expressed at high levels in Escherichia coli is functional.Science 224: 1343–1346, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Jones N, Shenk T: An adenovirus type 5 early gene function regulates expression of other early viral genes.Proc Natl Acad Sci USA 76: 3665–3669, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Stein R, Ziff EB: HeLa cell beta-tubulin gene transcription is stimulated by adenovirus 5 in parallel with viral early genes by an E1a-dependent mechanism.Mol Cell Biol 4: 2792–2801, 1984.

    PubMed  CAS  Google Scholar 

  10. Kao HT, Nevins JR: Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection.Mol Cell Biol 3: 2058–2065, 1983.

    PubMed  CAS  Google Scholar 

  11. Sassone-Corsi P, Borrelli E: Promoter trans-activation of protooncogenes c-fos and c-myc, but not c-Ha-ras, by products of adenovirus early region 1A.Proc Natl Acad Sci USA 84: 6430–6433, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. de Groot R, Foulkes N, Mulder M,et al: Positive regulation of jun/AP-1 by E1A.Mol Cell Biol 11: 192–201, 1991.

    PubMed  Google Scholar 

  13. Borrelli E, Hen R, Chambon P: Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription.Nature 312: 608–612, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Velcich A, Ziff E: Adenovirus E1A proteins repress transcription from the SV40 early promoter.Cell 40: 705–716, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Velcich A, Kern FG, Basilico C,et al: Adenovirus E1a proteins repress expression from polyomavirus early and late promoters.Mol Cell Biol 6: 4019–4025, 1986.

    PubMed  CAS  Google Scholar 

  16. Hen R, Borrelli E, Chambon P: Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products.Science 230: 1391–1394, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Stein RW, Whelan J: Insulin gene enhancer activity is inhibited by adenovirus 5 E1a gene products.Mol Cell Biol 9: 4531–4534, 1989.

    PubMed  CAS  Google Scholar 

  18. Sogawa K, Handa H, Fujisawa SA,et al: Repression of cytochrome P-450c gene expression by cotransfection with adenovirus E1A DNA.Eur J Biochem 181: 539–544, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Young KS, Weigel R, Hiebert S,et al: Adenovirus E1A-mediated negative control of genes activated during F9 differentiation.Mol Cell Biol 9: 3109–3113, 1989.

    PubMed  CAS  Google Scholar 

  20. Webster KA, Muscat GE, Kedes L: Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters.Nature 332: 553–557, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Timmers HT, De Wit D, Bos JL,et al: E1A products of adenoviruses reduce the expression of cellular proliferation-associated genes.Oncogene Res 3: 67–76, 1988.

    PubMed  CAS  Google Scholar 

  22. Timmers HT, van Dam H, Pronk GJ,et al: Adenovirus E1A represses transcription of the cellular JE gene.J Virol 63: 1470–1473, 1989.

    PubMed  CAS  Google Scholar 

  23. van Dam H, Offringa R, Smits AM,et al: The repression of the growth factor-inducible genes JE, c-myc and stromelysin by adenovirus E1A is mediated by conserved region 1.Oncogene 4: 1207–1212, 1989.

    PubMed  Google Scholar 

  24. Berk AJ: Functions of adenovirus E1A.Cancer Surveys 5: 367–387, 1986.

    PubMed  CAS  Google Scholar 

  25. Schrier PI, Bernards R, Vaessen RT,et al: Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells.Nature 305: 771–775, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Ruley HE: Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture.Nature 304: 602–606, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Byrd PJ, Grand RJ, Gallimore PH: Differential transformation of primary human embryo retinal cells by adenovirus El regions and combinations of E1A+Ras.Oncogene 2: 477–484, 1988.

    PubMed  CAS  Google Scholar 

  28. Montell C, Courtois G, Eng C,et al: Complete transformation by adenovirus 2 requires both ElA proteins.Cell 36: 951–961, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Moran E, Zerler B, Harrison TM,et al: Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes.Mol Cell Biol 6: 3470–3480, 1986.

    PubMed  CAS  Google Scholar 

  30. Shenk T, Flint J: Transcriptional and transforming activities of the adenovirus E1A proteins.Adv Cancer Res 57: 47–85, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Whyte P, Buchkovich KJ, Horowitz JM,et al: Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product.Nature 334: 124–129, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Weinberg RA: The retinoblastoma protein and cell cycle control.Cell 81: 323–330, 1995.

    Article  PubMed  CAS  Google Scholar 

  33. Yan DH, Chang LS, Hung MC: Repressed expression of the HER-2/c-erbB-2 proto-oncogene by the adenovirus Ela gene products.Oncogene 6: 343–345, 1991.

    PubMed  CAS  Google Scholar 

  34. Yu D, Suen TC, Yan DH,et al: Transcriptional repression of the neu protooncogene by the adenovirus 5 E1A gene products.Proc Natl Acad Sci USA 87: 4499–4503, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Yu DH, Scorsone K, Hung MC: Adenovirus type 5 E1A gene products act as transformation suppressors of the neu oncogene.Mol Cell Biol 11: 1745–1750, 1991.

    PubMed  CAS  Google Scholar 

  36. Yu D, Hamada J, Zhang H,et al: Mechanisms of c-erbB2/neu oncogene-induced metastasis and repression of metastatic properties by adenovirus 5 ElA gene products.Oncogene 7: 2263–2270, 1992.

    PubMed  CAS  Google Scholar 

  37. Yu D, Shi D, Scanlon M,et al: Reexpression of neuencoded oncoprotein counteracts the tumor-suppressing but not the metastasis-suppressing function of ElA.Cancer Research 53: 5784–5790, 1993.

    PubMed  CAS  Google Scholar 

  38. Yu D, Wolf JK, Scanlon M,et al: Enhanced c-erbB2/neu expression in human ovarian cancer cells correlates with more severe malignancy that can be suppressed by ElA.Cancer Res 53: 891–898, 1993.

    PubMed  CAS  Google Scholar 

  39. Pozzatti R, McCormick M, Thompson MA,et al: The ElA gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat embryo cells.Mol Cell Biol 8: 2984–2988, 1988.

    PubMed  CAS  Google Scholar 

  40. Frisch SM: Antioncogenic effect of adenovirus ElA in human tumor cells.Proc Natl Acad Sci USA 88: 9077–9081, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Frisch SM, Dolter KE: Adenovirus E1A-mediated tumor suppression by a c-erbB-2/neu-independent mechanism.Cancer Research 55: 5551–5555, 1995.

    PubMed  CAS  Google Scholar 

  42. Deng J, Xia W, Hung MC: Adenovirus 5 ElA-mediated tumor suppression associated with ElA-mediated apoptosis in vivo.Oncogene 17: 2167–2175, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. van Groningen JJ, Cornelissen IM, van Muijen GN,et al: Simultaneous suppression of progression marker genes in the highly malignant human melanoma cell line BLM after transfection with the adenovirus-5 ElA gene.Biochemical & Biophysical Research Communications 225: 808–816, 1996.

    Article  Google Scholar 

  44. Frisch SM, Reich R, Collier IE,et al: Adenovirus ElA represses protease gene expression and inhibits metastasis of human tumor cells.Oncogene 5: 75–83, 1990.

    PubMed  CAS  Google Scholar 

  45. Steeg PS, Bevilacqua G, Pozzatti R,et al: Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis.Cancer Res 48: 6550–6554, 1988.

    PubMed  CAS  Google Scholar 

  46. Rosengard AM, Krutzsch HC, Shearn Aet al: Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development.Nature 342: 177–180, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Rao L, Debbas M, Sabbatini P,et al: The adenovirus ElA proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins.Proc Natl Acad Sci USA 89: 7742–7746, 1992.

    Article  Google Scholar 

  48. Lowe SW, Ruley HE: Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis.Genes Dev 7: 535–545, 1993.

    Article  PubMed  CAS  Google Scholar 

  49. Debbas M, White E: Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B.Genes Dev 7: 546–554, 1993.

    Article  PubMed  CAS  Google Scholar 

  50. Teodoro JG, Shore GC, Branton PE: Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms.Oncogene 11: 467–474, 1995.

    PubMed  CAS  Google Scholar 

  51. Chen MJ, Holskin B, Strickler J,et al: Induction by ElA oncogene expression of cellular susceptibility to lysis by TNF.Nature 330: 581–583, 1987.

    Article  PubMed  CAS  Google Scholar 

  52. Cook JL, May DL, Wilson BA,et al: Role of tumor necrosis factor-alpha in ElA oncogene-induced susceptibility of neoplastic cells to lysis by natural killer cells and activated macrophages.J Immunol 142: 4527–4534, 1989.

    PubMed  CAS  Google Scholar 

  53. Friedman DJ, Ricciardi RP: Adenovirus type 12 ElA gene represses accumulation of MHC class I mRNAs at the level of transcription.Virology 165: 303–305, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Vaessen RT, Houweling A, van der Eb AJ: Post-transcriptional control of class I MHC mRNA expression in adenovirus 12-transformed cells.Science 235: 1486–1488, 1987.

    Article  PubMed  CAS  Google Scholar 

  55. Lee WP, Liao Y, Robinson D,et al: Axl-Gas6 interaction counteracts E1A-mediated cell growth suppression and proapoptotic activity.Mol Cell Biol 19: 8075–8082, 1999.

    PubMed  CAS  Google Scholar 

  56. Nelson CC, Braithwaite AW, Silvestro M,et al: E1A-dependent expression of adenovirus genes in OTF963 embryonal carcinoma cells: role of E1a-induced differentiation.Proc Natl Acad Sci USA 87: 8041–8045, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. Frisch SM: ElA induces the expression of epithelial characteristics.J Cell Biol 127: 1085–1096, 1994.

    Article  PubMed  CAS  Google Scholar 

  58. Sanchez-Prieto R, de Alava E, Palomino T,et al: An association between viral genes and human oncogenic alterations: the adenovirus ElA induces the Ewing tumor fusion transcript EWS-FLI1 [see comments].Nat Med 5: 1076–1079, 1999.

    Article  PubMed  CAS  Google Scholar 

  59. Kovar H: ElA and the Ewing tumor translocation.Nature Medicine 5: 1331, 1999.

    Article  PubMed  CAS  Google Scholar 

  60. Melot T, Delattre O: E1A and the Ewing tumor translocation.Nature Medicine 5: 1331, 1999.

    Article  PubMed  CAS  Google Scholar 

  61. Weinberg RA: E2F and cell proliferation: a world turned upside down.Cell 85: 457–459, 1996.

    Article  PubMed  CAS  Google Scholar 

  62. Yamasaki L, Jacks T, Bronson R,et al: Tumor induction and tissue atrophy in mice lacking E2F-1.Cell 85: 537–548, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. Field SJ, Tsai FY, Kuo F,et al: E2F-1 functions in mice to promote apoptosis and suppress proliferation.Cell 85: 549–561, 1996.

    Article  PubMed  CAS  Google Scholar 

  64. Hunt KK, Deng J, Liu TJ,et al: Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53.Cancer Res 57: 4722–4726, 1997.

    PubMed  CAS  Google Scholar 

  65. Shao R, Karunagaran D, Zhou BP,et al: Inhibition of nuclear factor-kappaB activity is involved in ElA- mediated sensitization of radiation-induced apoptosis.J Biol Chem 272: 32739–32742, 1997.

    Article  PubMed  CAS  Google Scholar 

  66. Shao R, Hu MC, Zhou BP,et al: ElA sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of IkappaB kinases and nuclear factor kappaB activities.J Biol Chem 274: 21495–21498, 1999.

    Article  PubMed  CAS  Google Scholar 

  67. Lowe SW, Ruley HE, Jacks T,et al: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents.Cell 74: 957–967, 1993.

    Article  PubMed  CAS  Google Scholar 

  68. Sanchez-Prieto R, Quintanilla M, Cano A,et al: Carcinoma cell lines become sensitive to DNA-damaging agents by the expression of the adenovirus ElA gene.Oncogene 13: 1083–1092, 1996.

    PubMed  Google Scholar 

  69. Brader KR, Wolf JK, Hung MC,et al: Adenovirus ElA Expression Enhances the Sensitivity of an Ovarian Cancer Cell Line to Multiple Cytotoxic Agents through an Apoptotic Mechanism.Clin Cancer Res 3: 2017–2024, 1997.

    PubMed  CAS  Google Scholar 

  70. Sherr CJ, Sherr CJ: Tumor surveillance via the ARF-p53 pathway [In Process Citation].Genes Dev 12: 2984–2991, 1998.

    Article  PubMed  CAS  Google Scholar 

  71. Ueno NT, Yu D, Hung MC: Chemosensitization of HER-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 ElA.Oncogene 15: 953–960, 1997.

    Article  PubMed  CAS  Google Scholar 

  72. de Stanchina E, McCurrach ME, Zindy F,et al: ElA signaling to p53 involves the pl9(ARF) tumor suppressor.Genes Dev 12: 2434–2442, 1998.

    Article  PubMed  Google Scholar 

  73. Bates S, Phillips AC, Clark PA,et al: pl4ARF links the tumour suppressors RB and p53 [letter].Nature 395: 124–125, 1998.

    Article  PubMed  CAS  Google Scholar 

  74. Gusterson BA, Gelber RD, Goldhirsch A,et al: Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group.J Clin Oncol 10: 1049–1056, 1992.

    PubMed  CAS  Google Scholar 

  75. Muss HB, Thor AD, Berry DA,et al: c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer.N Engl J Med 330: 1260–1266, 1994.

    Article  PubMed  CAS  Google Scholar 

  76. Slamon D, Leyland-Jones B, Shak S,et al: Addition of HerceptinÅh! (humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer (HER2+/MBC) markedly increase anticancer activity: A randomized, multinational controlled phase III trial, Proc Annu Meet Am Soc Clin Oncol, 1998.

  77. Pietras RJ, Fendly BM, Chazin VR,et al: Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells.Oncogene 9: 1829–1838, 1994.

    PubMed  CAS  Google Scholar 

  78. Pegram MD, Lipton A, Hayes DF,et al: Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-pl85HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overex-pressing metastatic breast cancer refractory to chemotherapy treatment.J Clin Oncol 16: 2659–2671, 1998.

    PubMed  CAS  Google Scholar 

  79. Baselga J, Norton L, Albanell J,et al: Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts.Cancer Res 58: 2825–2831, 1998.

    PubMed  CAS  Google Scholar 

  80. Pegram MD, Slamon DJ: Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity.Semin Oncol 26: 89–95, 1999.

    PubMed  CAS  Google Scholar 

  81. Yu D, Liu B, Jing T,et al: Overexpression of both pl85c-erbB2 and pl70mdr-l renders breast cancer cells highly resistant to taxol.Oncogene 16: 2087–2094, 1998.

    Article  PubMed  CAS  Google Scholar 

  82. Yu D, Jing T, Liu B,et al: Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cipl, which inhibits p34Cdc2 kinase.Mol Cell 2: 581–591, 1998.

    Article  PubMed  CAS  Google Scholar 

  83. Pegram MD, Finn RS, Arzoo K,et al: The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells.Oncogene 15: 537–547, 1997.

    Article  PubMed  CAS  Google Scholar 

  84. Friedmann T: Overcoming the obstacles to gene therapy.Sci Am 276: 96–101, 1997.

    PubMed  CAS  Google Scholar 

  85. Feigner PL: Nonviral strategies for gene therapy.Sci Am 276: 102–106, 1997.

    Article  Google Scholar 

  86. Feigner PL, Ringold GM: Cationic liposome-mediated transfection.Nature 337: 387–388, 1989.

    Article  Google Scholar 

  87. Nabel GJ, Nabel EG, Yang ZY,et al: Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans.Proc Natl Acad Sci USA 90: 11307–11311, 1993.

    Article  PubMed  CAS  Google Scholar 

  88. Yu D, Matin A, Xia W,et al: Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu.Oncogene 11: 1383–1388, 1995.

    PubMed  CAS  Google Scholar 

  89. Chang JY, Xia W, Shao R,et al: The tumor suppression activity of E1A in HER-2/neu-overexpressing breast cancer.Oncogene 14: 561–568, 1997.

    Article  PubMed  CAS  Google Scholar 

  90. Chang JY, Xia WY, Shao RP,et al: Inhibition of intratracheal lung cancer development by systemic delivery of E1A.Oncogene 13: 1405–1412, 1996.

    PubMed  CAS  Google Scholar 

  91. Chen H, Yu D, Chinnadurai G,et al: Mapping of adenovirus 5 E1A domains responsible for suppression of neu-mediated transformation via transcriptional repression of neu.Oncogene 14: 1965–1971, 1997.

    Article  PubMed  CAS  Google Scholar 

  92. Xing X, Zhang S, Chang JY,et al: Safety study and characterization of E1A-liposome complex gene delivery in an ovarian cancer model.Gene Ther 5: 1538–1544, 1998.

    Article  PubMed  CAS  Google Scholar 

  93. Xing X, Liu V, Xia W,et al: Safety studies of the intraperitoneal injection of ElA-liposome complex in mice.Gene Ther 4: 238–243, 1997.

    Article  PubMed  CAS  Google Scholar 

  94. Nabel EG, Gordon D, Yang ZY,et al: Gene transfer in vivo with DNA-liposome complexes: lack of autoimmunity and gonadal localization.Hum Gene Ther 3: 649–656, 1992.

    Article  PubMed  CAS  Google Scholar 

  95. Hortobagyi GN, Ueno NT, Xia WY,et al: Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: A phase I clinical trial.Journal of Clinical Oncology 19: 3422–3433, 2001.

    PubMed  CAS  Google Scholar 

  96. Xia WY, Lau YK, Zhang HZ,et al: Strong correlation between c-Erbb-2 overexpression and overall survival of patients with oral squamous cell carcinoma.Clin Cancer Res 3: 3–9, 1997.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto T. Ueno.

Additional information

Reprint requests to Naoto T. Ueno, Department of Blood and Marrow Transplantation, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 448, Houston, TX 77030, USA.

About this article

Cite this article

Ueno, N.T., Yu, D. & Hung, MC. E1A: Tumor suppressor or oncogene? Preclinical and clinical investigations ofE1A gene therapy. Breast Cancer 8, 285–293 (2001). https://doi.org/10.1007/BF02967526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02967526

Key words

Navigation