Skip to main content
Log in

Membranes of five-fold alamethicin-resistantStaphylococcus aureus, Enterococcus faecalis andBacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge

  • Physiology and Metabolism
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to understand development of resistance to alamethicin (a model barrel stave pore forming antimicrobial peptide) by investigating changes in phospholipid profile, fatty acid side chain analysis and extent of alamethicin insertion in biomimetic membrane prepared form wild type strains and five folds alamethicin resistant variants ofStaphylococcus aureus NCDC 110,Enterococcus faecalis NCDC 114 andBacillus cereus NCDC 66. The wild type strains NCDC 110, 114, 66, were sensitive to alamethicin with IC50 5.5, 3.25 and 2.0 μg/ml respectively. Wild type strains were cultured in the presence of alamethicin to select resistant variants with IC50 29.0, 17.0 and 9.5 μg/ml respectively. The phospholipid profile analysis revealed increase in amino-group containing phospholipids to amino-group lacking phospholipids ratio between wild-type and resistant variant inS. aureus and B. cereus but decreased inE. faecalis. Predominant fatty acids in all strains were composed of even number of carbons. Linoleic acid was detected only in resistant strain ofB. cereus. As indicated by saturated-to-unsaturated fatty acids ratio, the membrane fromS. aureus andE. faecalis became more rigid, whereas, inB. cereus it became more fluid. Using a colorimetricin vitro assay, a decrease in alamethicin insertion in the biomimetic membrane could be observed upon acquisition of resistance. The membranes of five-fold alamethicin-resistantS. aureus, E. faecalis andB. cereus revealed changes in membrane fluidity and surface charge upon acquisition of resistance to alamethicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beven L., Helluin O., Molle G., Duclohier H., Wroblewski H. (1999). Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides. Biochim. Biophys. Acta, 1421 (1): 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Bligh E.G., Dyer E.J. (1959). A Rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917.

    CAS  PubMed  Google Scholar 

  • Brogden K.A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria. Nature Rev. Microbiol., 3: 238–250.

    Article  CAS  Google Scholar 

  • Cabo M.L., Murado M.A., Gonzalez M.P., Pastoriza L. (1999). A method for bacteriocin quantification. J. Appl. Microbiol., 87 (6): 907–914.

    Article  CAS  PubMed  Google Scholar 

  • Charych D.H., Nagy J.O., Waynespevak M.D., Bednarski (1993). Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science, 261: 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y., Ludescher R.D., Montville T.J. (1998). Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appl. Environ. Microbiol., 64: 3530–3532.

    CAS  PubMed  Google Scholar 

  • Chen F., Lee M., Hang H.W. (2002). Sigmoidal concentration dependence of antimicrobial peptide activities: A case study of alamethicin. Biophysics J., 82: 908–914.

    Article  CAS  Google Scholar 

  • Crandall A.D., Montville T.J. (1998). Nisin resistance inListeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol., 64 (1): 231–237.

    CAS  PubMed  Google Scholar 

  • Davis E.A., Adams M.R. (1994). Resistance ofListeria monocytogenes to the bacteriocin nisin. Int. J. Food Microbiol., 21: 341–347.

    Article  Google Scholar 

  • Food and Drug Administration (1988). Nisin preparation: Affirmation of GRAS status as a direct human food ingredient. Food and Drug Administration, Federal Register, 53: 11247.

    Google Scholar 

  • Gravesen A., Ramnath M., Rechinger K.B., Anderesen N., Jansch L., Hechard Y., Hastings J., Knochel S. (2001). High level resistance to class IIa bacteriocins is associated with one general mechanism inListeria monocytogenes. Microbiology, 148: 2361–2369.

    Google Scholar 

  • Hancock R.E.W., Chapple D.S. (1999). Peptide antibiotics. Antimicrob. Agent Chemother., 43 (6): 1317–1323.

    CAS  Google Scholar 

  • Hechard Y., Pelletier C., Cenatiempo Y., Free T. (2001). Analysis of δ54-dependent genes inEnterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology, 147: 1575–1580.

    CAS  PubMed  Google Scholar 

  • Jonas U., Shah K., Norvez S., Charych D.H. (1999). Reversible color switching and unusual solution polymerization of hydrazide modified diacetylene lipids. J. Am. Chem. Soc., 121 (19): 4580–4588.

    Article  CAS  Google Scholar 

  • Kahovcova J., Odavic R. (1969). A simple method for the quantitative analysis of phospholipids separated by thin layer chromatography. J. Chromatog., 40: 90–96.

    Article  CAS  Google Scholar 

  • Katz S.S., Weinrauch Y., Munford R.S., Weiss E.P. (1999). Deacylation of PS in wholeE. coli during destruction by cellular and extracellular components of a rabbit peritoneal inflammatory exudate. J. Biol. Chem., 274.

  • Kolusheva S., Shalal T., Jelinek R. (2000). Peptide-membrane interactions studied by a new phospholipid-polydiacetylene colorimetric assay. Biochemistry, 39: 15851–15859.

    Article  CAS  PubMed  Google Scholar 

  • Li J., Chikindas, M.L., Ludescher R.D., Montville T.J. (2002). Temperature and surfactant induced membrane modifications that alterListeria monocytogenes nisin sensitivity by different mechanisms. Appl. Environ. Microbiol., 68 (12): 5904–5910.

    Article  CAS  PubMed  Google Scholar 

  • Limonet M., Revol-Junelles A.M., Milliere J.B. (2002). Variations in the membrane fatty acid composition of resistant or susceptibleLeuconostoc or Weissella strains in presence or absence of Mesenterocin 52A and Mesenterocin 52B produced byLeuconostoc mesenteroides subsp.mesenteroides FR52. Appl. Enrivon. Microbiol., 68: 2910–2916.

    Article  CAS  Google Scholar 

  • Mazzotta A.S., Montville T.J. (1997). Nisin induces changes in membrane fatty acid composition ofListeria monocytogenes nisin-resistant strains at 10°C and 30°C. J. Appl. Microbiol., 82: 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Ming X., Daeschel M.A. (1995). Correlation of cellular phospholipid content with nisin resistance ofListeria monocytogenes. Scott A. J. Food Prot., 58: 416–420.

    CAS  Google Scholar 

  • Moll G.N., Clark J., Chan W.C., Bycroft B.W., Roberts G.C., Konings W.N., Driessen A.J. (1997). Role of transmembrane pH gradient and membrane binding in nisin pore formation. J. Bacteriol., 179 (1): 135–140.

    CAS  PubMed  Google Scholar 

  • North C.L., Franklin J.C., Bryant R.G., Cafiso D.S. (1994). Molecular flexibility demonstrated by paramagnetic enhancements on nuclear relaxation. Application to alamethicin: a voltage-gated peptide channel. Biophys. J., 67: 1861–1866.

    Article  CAS  PubMed  Google Scholar 

  • Powledge T.M. (2004). New antibiotics-resistance is futile. PLoS Biology, 2 (2): 151–154.

    Article  Google Scholar 

  • Rekhif N., Atrih A., Lefebvre G. (1994). Characterization and partial purification of plantaricin LC74, a bacteriocin produced byLactobacillus plantarum LC74. Biotech. Lett., 16 (8): 771–776.

    Google Scholar 

  • Sakayori Y., Muramatsu M., Hanada S., Kamagata Y., Kawamoto S., Shima J. (2003). Characterization of Enterococcus faecium mutants resistant to mundticin KS, a class Ila bacteriocin. Microbiology, 149 (10): 2901–2908.

    Article  CAS  PubMed  Google Scholar 

  • Sansom M.S.P. (1993). Alamethicin and related peptaibols: model ion channels. EurBiophys. J., 22: 105–124.

    CAS  Google Scholar 

  • Segolene C., Alain R., Yanick A., Herve P., Djamel D. (2007). Identification of new genes associated with intermediate resistance ofEnterococcus faecalis to divercin V41, a pediocin-like bacteriocin. Microbiology, 153: 1609–1618.

    Article  Google Scholar 

  • Sood S.K., Sinha P.R. (2003). Analysis of structure of YGNGV motif containing bacteriocins: A model for pore formation. Indian J. Biotech., 2: 227–235.

    CAS  Google Scholar 

  • Vadyvaloo V., Hastings J.W., Marthinus J., Van der Merwe, Rautenbach M. (2002). Members of class IIa bacteriocin-resistantListeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl. Environ. Microbiol., 68 (11): 5223–5230.

    Article  CAS  PubMed  Google Scholar 

  • Verheul A., Russel N.J., Hof R.V.T., Rombouts M., Abee T. (1997). Modifications of membrane phospholipid composition in nisin-resistantListeria monocytogenes Scott A. Appl. Environ. Microbiol., 63 (9): 3451–3457.

    CAS  PubMed  Google Scholar 

  • Yang L., Harroum T.A., Weiss T.M. (2001). Barrel stave model or Toroidal model? A case study on Melitin pores. Biophysics J., 81:1475–1485.

    Article  Google Scholar 

  • Younsi M.E., Ramananddraibe R.B., Donner M., Coulon J. (2000). Amphotericin B resistance and membrane fluidity inKluyveromyces lactis strains. Antimicrob. Agents Chemother., 44: 1911–1916.

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415: 389–395.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirenallur S. Thippeswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thippeswamy, H.S., Sood, S.K., Venkateswarlu, R. et al. Membranes of five-fold alamethicin-resistantStaphylococcus aureus, Enterococcus faecalis andBacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. Ann. Microbiol. 59, 593–601 (2009). https://doi.org/10.1007/BF03175151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175151

Key words

Navigation