Skip to main content
  • Food Microbiology
  • Original Articles
  • Published:

Production and partial characterization of extracellular peroxidase produced byStreptomyces sp. F6616 isolated in Turkey

Abstract

Streptomyces sp. F6616 was found to produce higher levels of extracellular peroxidase activity (0.535 U/mL) without any inducers than other actinobacteria which are previously reported. Maximum specific peroxidase activity (6.21 U/mg of protein) was obtained after 72 h of incubation at 30°C in a minimal salt medium (pH 8.0) containing (in wt/v) 0.6% yeast extract and 0.8% ball-milled wheat straw corresponding to a C:N ratio of 4.6:1. Characterization of the peroxidase revealed that the optimal temperature for the enzyme activity, using the standard 2,4-dichlorophenol (2,4-DCP) assay was 50°C, when the enzyme reaction was performed at pH 8.0. A study of the effect of temperature on the stability of peroxidase over time, showed that the enzyme was stable at 50°C, with a half-life of 145 min, while at higher temperature the stability and activity was reduced such that at 60°C the half-life of the enzyme was 30 min. The optimum pH for the activity of the enzyme occurred between pH 9.0 and 10.0. The apparentK m andV max values for the peroxidase preparations were determined to be 1.52 mmol/L and 1.84 U/mg protein, respectively using 2,4-DCP as a substrate. Characterization of the peroxidase activity revealed activity against 2,4-DCP, L-3,4-dihydroxyphenylalanine (L-DOPA), 2,4,5-trichlorophenol and other chlorophenols in the presence of hydrogen peroxide. However, inhibition of peroxidase activity with the addition of potassium cyanide and sodium azide, suggested the presence of heme component in the tertiary structure of the enzyme.

References

  • Ali M., Sreekrishnan T.R. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res., 5: 175–196.

    Article  CAS  Google Scholar 

  • Antonopoulos V.T., Rob A., Ball A.S., Wilson M.T. (2001). Dechlorination of chlorophenols using extracellular peroxidases produced byStreptomyces albus ATCC 3005. Enzyme Microb. Tech., 29: 62–69.

    Article  CAS  Google Scholar 

  • Archibald F.S. (1992). A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol., 58: 3110–3116.

    PubMed  CAS  Google Scholar 

  • Ball A.S., Trigo C. (1995). Characterization of a novel non-haem-containing extracellular peroxidase fromThermomonospora fusca. Biochem. Soc. T., 23: 272–276.

    CAS  Google Scholar 

  • Ball A.S., Colton J. (1996). Decolorisation of the polymeric dye Poly R byStreptomyces viridosporus T7A. J. Basic Microbiol., 36: 13–18.

    Article  CAS  Google Scholar 

  • Biely P. (1985). Microbial xylanolytic systems. Trends Biotechnol., 3: 286–290.

    Article  CAS  Google Scholar 

  • Burd W., Yourkevich O., Voskoboev A.J., Van-Pee K.H. (1995). Purification and properties of a non-haem chloroperoxidase fromSerratia marcescens. FEMS Microbiol. Lett., 129: 255–260.

    PubMed  CAS  Google Scholar 

  • Chivukula M., Spadaro J.T., Renganathan V. (1995). Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry, 34: 7765–7772.

    Article  PubMed  CAS  Google Scholar 

  • Crawford D.L., Crawford R.L. (1976). Microbial degradation of lignocellulose: the lignin component. Environ. Microbiol., 31: 714–717.

    CAS  Google Scholar 

  • Crawford D.L., Pometto A.L., Crawford R.L. (1983). Lignin degradation byStreptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol., 45: 898–904.

    PubMed  CAS  Google Scholar 

  • De Boer E., Van Kooyk Y., Tromp M.G.M., Plat H., Wever R. (1986). Bromoperoxidase fromAscophyllum nodosum: a novel class of enzymes containing vanadium as a prosthetic group. Biochim. Biophys. Acta, 869: 48–53.

    Google Scholar 

  • Deobald L.A., Crawford D.L. (1987). Activities of cellulase and other extracellular enzymes during lignin solubilization byStreptomyces viridosporus. Appl. Microbiol. Biot., 26: 158–163.

    Article  CAS  Google Scholar 

  • Franssen M.C.R. (1994). Halogenation and oxidation reactions with haloperoxidases. Biocatalysis, 10: 87–111.

    Article  CAS  Google Scholar 

  • Fukumori Y., Fujiwara T., Okada-Takahashi Y., Mukohata Y., Yamanaka T. (1985). Purification and properties of a peroxidase fromHalobacterium halobium L-33. J. Biochem., 98: 1055–1061.

    PubMed  CAS  Google Scholar 

  • Glenn J.K., Morgan M.A., Mayfeld M.B., Kuwahara M., Gold M.H. (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycetePhanerochaete chrysosporium. Biochem. Bioph. Res. Co., 114: 1077–1083.

    Article  CAS  Google Scholar 

  • Goszczynski S., Paszczynski A., Pasti-Grigsby M.B., Crawford R.L., Crawford D.L. (1994). New pathway for degradation of sulfonated azo dyes by microbial peroxidases ofPhanerochaete chrysosporium andStreptomyces chromofoscus. J. Bacteriol., 176: 1339–1347.

    PubMed  CAS  Google Scholar 

  • Hammel K.E., Tardone P.J. (1988). The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry, 27: 6563–6568.

    Article  CAS  Google Scholar 

  • Heinfling A., Martinez M.J., Martinez A.T., Bergbauer M., Szewzyk U. (1998). Transformation of industrial dyes by manganese peroxidases fromBjerkandera adusta andPleurotus eryngii in a manganese-independent reaction. Appl. Environ. Microbiol., 64: 2788–2793.

    PubMed  CAS  Google Scholar 

  • Hernandez M., Hernandez-Coronado M.J., Montiel M.D., Rodriguez J., Perez M.I., Bocchini P., Galletti G.C., Arias M.E. (2001). Pyrolysis/gas chromatography/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw. J. Anal. Appl. Pyrol., 58–59: 539–551.

    Article  Google Scholar 

  • Iqbal M., Mercer D.K., Miller P.G.G., McCarthy A.J. (1994). Thermostable extracellular peroxidases fromStreptomyces thermoviolaceus. Microbiology, 140: 1457–1465.

    Article  CAS  Google Scholar 

  • Johnson W.C., Lindsey A.J. (1939). An improved universal buffer. Analyst. 64: 490–492.

    Article  CAS  Google Scholar 

  • Kang M., Kang J.K., Kim E.S. (1999). Isolation and characterization of soilStreptomyces involved in 2,4-dichlorophenol oxidation. J. Microbiol. Biotechnol., 9: 877–880.

    CAS  Google Scholar 

  • Krenn B.E., Plat H., Wever R. (1988). Purification and some characteristics of a non-haem bromoperoxidase fromStreptomyces aureofaciens. Biochim. Biophys. Acta, 952: 255–260.

    PubMed  CAS  Google Scholar 

  • Lodha S.J., Korus A.R., Crawford D.L. (1991). Synthesis and properties of lignin peroxsidases fromStreptomyces viridosporus T7A. Appl. Biochem. Biotech., 28: 411–420.

    Article  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin-phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Maliki A., Zimmermann W. (1992). Purification and characterization of an intracellular peroxidase fromStreptomyces cyaneus. Appl. Environ. Microbiol., 58: 916–919.

    Google Scholar 

  • Martinez A.T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb. Tech., 30: 425–444.

    Article  CAS  Google Scholar 

  • McCarthy A.J., Peace E., Broda P. (1985). Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl. Microbiol. Biot., 21: 238–244.

    Article  CAS  Google Scholar 

  • Mercer D.K., Iqbal M., Miller P.G.G., McCarthy A.J. (1996). Screening actinomycetes for extracellular peroxidase activity. Appl. Environ. Microbiol., 62: 2186–2190.

    PubMed  CAS  Google Scholar 

  • Ollikka P., Alhonmaki K., Leppanen V.M., Glumoff T., Raijola T., Suominen I. (1993). Decolorization of azo, triphenyl methane, heterocyclic and polymeric dyes by lignin peroxidase isoenzymes fromPhanerochaete chrysosporium. Appl. Environ. Microbiol., 59: 4010–4016.

    PubMed  CAS  Google Scholar 

  • Orth A.B., Royse D.J., Tien M. (1993). Ubiquity of lignin degrading peroxidases among various wood-degrading fungi. Appl. Environ. Microbiol., 59: 4011–4023.

    Google Scholar 

  • Paszczynski A., Crawford R.L. (1995). Potential for bioremediation of xenobiotic compounds by the white-rot fungusPhanerochaete chrysosporium. Biotechnol. Prog., 11: 368–379.

    Article  CAS  Google Scholar 

  • Pazarlioglu N.K., Urek R.O., Ergun F. (2005). Biodecolourization of Direct Blue 15 by immobilizedPhanerochaete chrysosporium. Process Biochem., 40: 1923–1929.

    Article  CAS  Google Scholar 

  • Perez J., Munoz-Dorado J., De la Rubia T., Martinez J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol., 5: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra M., Crawford D.L., Hertel G. (1988). Characterisation of an extracellular lignin peroxidase of the lignocellulolytic actinomyceteStreptomyces viridosporus. Appl. Environ. Microbiol., 54: 3057–3063.

    PubMed  CAS  Google Scholar 

  • Rob A., Ball A.S., Tuncer M., Wilson M.T. (1996). Thermostable novel non-haem extracellular glycosylated peroxidase fromThermomonospora fusca BD25. Biotechnol. Appl. Bioc., 24: 161–170.

    CAS  Google Scholar 

  • Rob A., Hernandez M., Ball A.S. Tuncer, M. Arias, M.E., Wilson M.T. (1997). Production and partial characterization of extracellular peroxidase produced byStreptomyces avermitilis UAH30. Appl. Biochem. Biotech., 62: 159–174.

    Article  CAS  Google Scholar 

  • Sayadi S., Ellouz R. (1995). Roles of lignin peroxidase and manganese peroxidase fromPhanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl. Environ. Microbiol., 61: 1098–1103.

    PubMed  CAS  Google Scholar 

  • Shelton D.R., Khader S., Karns J.S., Pogell B.M. (1989). Metabolism of twelve herbicides byStreptomyces. Biodegradation, 7 (2): 129–136.

    Article  Google Scholar 

  • Spadaro J.T., Renganathan V. (1994). Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse yellow-degradation. Arch. Biochem. Biophys., 312: 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Spiker J.K., Crawford D.L., Thiel E.C. (1992). Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase ofStreptomyces viridosporus T7A. Appl. Microbiol. Biot., 37: 518–523.

    Article  CAS  Google Scholar 

  • Thakkar A.P., Dhamankar V.S., Kapadnis B.P. (2006). Biocatalytic decolourisation of molasses byPhanerochaete chrysosporium. Bioresource Technol., 97: 1377–1381.

    Article  CAS  Google Scholar 

  • Thompson D.N., Hames B.R., Reddy C.A., Grethlein H.E. (1998).In vitro degradation of insoluble lignin in aqueous media by lignin peroxidase and manganese peroxidase. Appl. Biochem. Biotech., 70 (2): 967–982.

    Article  Google Scholar 

  • Tien M., Kirk T.K. (1983). Lignin-degrading enzyme from the hymenomycetePhanerochaete chrysosporium burds. Science, 221: 661–663.

    Article  PubMed  CAS  Google Scholar 

  • Trigo C., Ball A.S. (1994). Production of extracellular enzymes during the solubilisation of straw byThermomonospora fusca BD25. Appl. Microbiol. Biot., 41: 366–372.

    Article  CAS  Google Scholar 

  • Tuncer M., Rob A., Ball A.S., Wilson M.T. (1999). Optimisation of extracellular lignocellulolytic enzyme production by a thermophilic actinomyceteThermomonospora fusca BD25. Enzyme Microb. Tech., 25: 38–47.

    Article  CAS  Google Scholar 

  • Tuncer M., Ball A.S. (2002). Degradation of lignocellulose by extracellular enzymes produced byThermomonospora fusca BD25. Appl. Microbiol. Biot., 58: 608–611.

    Article  CAS  Google Scholar 

  • Tuncer M., Ball A.S. (2003). Purification and partial characterization of α-L-arabinofuranosidase produced byThermomonospora fusca BD25. Folia Microbiol., 48: 168–172.

    Article  CAS  Google Scholar 

  • Tuncer M., Kuru A., Isikli M., Sahin N., Çelenk F.G. (2004). Optimization of extracellular endoxylanase, endoglucanase and peroxidase production byStreptomyces sp. F2621 isolated in Turkey. J. Appl. Microbiol., 97: 783–791.

    Article  PubMed  CAS  Google Scholar 

  • Vali K., Brock B.J., Joshi D.K., Gold M.H. (1992a). Degradation of 2,4-dinitro-toluene by the lignin-degrading fungusPhanerochaete chrysosporium. Appl. Environ. Microbiol., 58: 221–228.

    Google Scholar 

  • Vali K., Wariishi H., Gold M.H. (1992b). Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycetePhanerochaete chrysosporium. J. Bacteriol., 174: 2131–2137.

    Google Scholar 

  • Vazquez-Duhalt R., Westlake D.W.S., Fedorak P.M. (1995). Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Appl. Microbiol. Biot., 42: 675–681.

    Article  CAS  Google Scholar 

  • Viikari L., Sundquist J., Kettunen J. (1991). Xylanase enzymes promote pulp bleaching. Pap. Puu-Pap. Tim., 73: 384–389.

    CAS  Google Scholar 

  • Wiesner W., Van-Pee K.H., Lingens F. (1986). Detection of a new chloroperoxidase inPseudomonas pyrrocinia. FEBS Lett., 209: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Wilson D.B. (1992). Biochemistry and genetics of actinomycete cellulase. Crit. Rev. Biotechnol., 12: 45–63.

    Article  PubMed  CAS  Google Scholar 

  • Yu H., Whittaker J.W. (1989). Vanadate activation of bromoperoxidase fromCorallian officinalis. Biochem. Bioph. Res. Co., 160: 87–92.

    Article  CAS  Google Scholar 

  • Zerbini J.E., Oliveria E.M.M., Bon E.P.S. (1999). Lignin peroxidase production byStreptomyces viridosporus T7A. Appl. Biochem. Biotech., 77–79: 681–688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Münir Tuncer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuncer, M., Kuru, A., Sahin, N. et al. Production and partial characterization of extracellular peroxidase produced byStreptomyces sp. F6616 isolated in Turkey. Ann. Microbiol. 59, 323–334 (2009). https://doi.org/10.1007/BF03178335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178335

Key words