Skip to main content
Log in

Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

In recent years, the emphasis of theoretical work on phylogenetic inference has shifted from the development of new tree inference methods to the development of methods to measure the statistical support for the topologies. This paper reviews 3 approaches to assign support values to branches in trees obtained in the analysis of molecular sequences: the bootstrap, the Bayesian posterior probabilities for clades, and the interior branch tests. In some circumstances, these methods give different answers. It should not be surprising: their assumptions are different. Thus the interior branch tests assume that a given topology is true and only consider if a particular branch length is longer than zero. If a tree is incorrect, a wrong branch (a low bootstrap or Bayesian support may be an indication) may have a non-zero length. If the substitution model is oversimplified, the length of a branch may be overestimated, and the Bayesian support for the branch may be inflated. The bootstrap, on the other hand, approximates the variance of the data under the real model of sequence evolution, because it involves direct resampling from this data. Thus the discrepancy between the Bayesian support and the bootstrap support may signal model inaccuracy. In practical application, use of all 3 methods is recommended, and if discrepancies are observed, then a careful analysis of their potential origins should be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro ME, Zoller S, Lutzoni F, 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Alfaro ME, Holder MT, 2006. The posterior and the prior in Bayesian phylogenetics Annu Rev Ecol Evol Syst 37: 19–42.

    Article  Google Scholar 

  • Anisimova M, Gascuel O, 2006. Approximate likelihood-ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55: 539–552.

    Article  PubMed  Google Scholar 

  • Bakke E, von Haeseler A, 1999. Distance measures in terms of substitution process. Theor Popul Biol 55: 166–175.

    Article  Google Scholar 

  • Bergsten J, 2005. A review of long-branch attraction. Cladistics 21: 163–193.

    Article  Google Scholar 

  • Brandley MC, Leache AD, Warren DL, McGuire JA, 2006. Are unequal clade priors problematic for Bayesian phylogenetics? Syst Biol 55: 138–146.

    Article  PubMed  Google Scholar 

  • Berry V, Gascuel O, 1996. On the interpretation of bootstrap trees: appropriate threshold of clade selection and induced gain. Mol Biol Evol 13: 999–1011.

    CAS  Google Scholar 

  • Buckley TR, 2002. Model misspecification and probabilistic tests of topology: Evidence from empirical data sets. Syst Biol 51: 509–523.

    Article  PubMed  Google Scholar 

  • Buckley TR, Simon C, Chambers GK, 2001. Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support. SystBiol 50: 67–86.

    CAS  Google Scholar 

  • Buckley TR, Cunningham CW, 2002. The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support. Mol Biol Evol 19: 394–405.

    PubMed  CAS  Google Scholar 

  • Buckley TR, Arensburger P, Simon C, Chambers GK, 2002. Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Syst Biol 51: 4–18.

    Article  PubMed  Google Scholar 

  • Bulmer M, 1991. Use of the method of generalized least squares in reconstructing phylogenies from sequence data. Mol Biol Evol 8: 868–883.

    CAS  Google Scholar 

  • Cao Y, Adachi J, Hasegawa M, 1998. Comment on the quartet puzzling method for finding maximum-likelihood tree topologies. Mol Biol Evol 15: 87–89.

    CAS  Google Scholar 

  • Collin R, 2003. Phylogenetic relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Syst Biol 52: 618–640.

    Article  PubMed  Google Scholar 

  • Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K, 2003. Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 52: 477–487.

    Article  PubMed  Google Scholar 

  • Czarna A, Sanjuan R, Gonzalez-Candelas F, Wróbel B, 2006. Topology testing of phylogenies using least squares methods. BMC Evol Biol 6: 105.

    Article  PubMed  CAS  Google Scholar 

  • DeBry RW, 2003. Identifying conflicting signal in a multigene analysis reveals a highly resolved tree: The phylogeny of Rodentia. Syst Biol 52: 604–617.

    Article  PubMed  Google Scholar 

  • Desper R, Gascuel O, 2004. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21: 587–598.

    Article  PubMed  CAS  Google Scholar 

  • Dopazo J, 1994. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J Mol Evol 38: 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Dopazo H, Dopazo J, 2005. Genome scale evidence for the nematode-arthropod clade. Genome Biol 6: R41.

    Article  PubMed  CAS  Google Scholar 

  • Dopazo H, Santoyo J, Dopazo J, 2004. Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20: I116-I121.

    Article  PubMed  CAS  Google Scholar 

  • Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP, 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Durbin R, Eddy S, Krogh A, Mitchison G, 1998. Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge Univ Press: 212.

    Book  Google Scholar 

  • Edwards AWF, Cavalli-Sforza LL, 1963. The reconstruction of evolution. Ann Hum Gen 27: 105–106.

    Google Scholar 

  • Edwards SV, Liu L, Pearl DK, 2007. High resolution species trees without concatenation. Proc Natl Acad Sci USA 104: 5936–5941.

    Article  PubMed  CAS  Google Scholar 

  • Efron B, 1979. Bootstrap methods: another look at the jackknife. Ann Statist 7: 1–26.

    Article  Google Scholar 

  • Efron B, 2003. Second thoughts on the bootstrap. Stat Sci 18: 135–140.

    Article  Google Scholar 

  • Efron B, Halloran E, Holmes S, 1996. Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci USA 93: 13429–13434.

    Article  PubMed  CAS  Google Scholar 

  • Erixon P,Svennblad B,BrittonT, Oxelman B, 2003. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52: 665–673.

    Article  PubMed  Google Scholar 

  • Farris JS, Albert VA, Kallersjo M, Lipscomb D, Kluge AG, 1996. Parsimony jackknifing outperforms bootstrapping. Cladistics 12: 99–124.

    Article  Google Scholar 

  • Felsenstein J, 1978. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biol J Linn Soc 16: 183–196.

    Article  Google Scholar 

  • Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Felsenstein J, 1988. Phylogenies from molecular sequences: inference and reliability. Ann Rev Genet 22: 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J, 2000. PHYLIP (Phylogeny Inference Package). Distributed by the author, University of Washington, Seattle.

    Google Scholar 

  • Felsenstein J, 2004. Inferring phylogenies. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Felsenstein J, Kishino H, 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst Biol 42: 193–200.

    Google Scholar 

  • Gascuel O, 1997a. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14: 685–695.

    PubMed  CAS  Google Scholar 

  • Gascuel O, 1997b. Concerning the NJ algorithm and its unweighted version, UNJ. In: Mirkin B, McMorris F, Roberts F, Rhetsky A, eds. Mathematical hierarchies and biology. Providence, RI: American Mathematical Society: 149–170.

    Google Scholar 

  • Gascuel O, Steel M, 2006. Neighbor joining revealed. Mol Biol Evol 23: 1997–2000.

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Lewis PO, 1995. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol 12: 152–162.

    PubMed  CAS  Google Scholar 

  • Goldman N, Anderson JP, Rodrigo AG, 2000. Likelihood-based tests of topologies in phylogenetics. Syst Biol 49: 652–670.

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Whelan S, 2000. Statistical tests of gamma distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol Biol Evol 17: 975–978.

    PubMed  CAS  Google Scholar 

  • Helm-Bychowski K, Crafcraft J, 1993. Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (class Aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene. Mol Biol Evol 10: 1196–1214.

    PubMed  CAS  Google Scholar 

  • Hendy MD, Penny D, 1989. A framework for the quantitative study of evolutionary trees. Syst Zool 38: 297–309.

    Article  Google Scholar 

  • Hillis DM, Bull JJ, 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42: 182–192.

    Google Scholar 

  • Holder M, Lewis PO, 2003. Phylogeny estimation: traditional and Bayesian approaches. Nature Rev Genet 4: 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Holmes S, 2003a. Bootstrapping phylogenetic trees: theory and methods. Stat Sci 18: 241–255.

    Article  Google Scholar 

  • Holmes S, 2003b. Statistics for phylogenetic trees. Theor Popul Biol 63: 17–32.

    Article  PubMed  Google Scholar 

  • Hovenkamp P, 2006. Can taxon-sampling effects be minimized by using branch supports? Cladistics 22: 264–275.

    Article  Google Scholar 

  • Huelsenbeck JP, Hillis DM, Nielsen R, 1996. A likelihood-ratio test of monophyly. Syst Biol 45: 546–558.

    Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP, 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F, 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51: 673–688.

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B, 2004. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53: 904–913.

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist, FR, 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist, FR, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D, 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.

    Article  PubMed  CAS  Google Scholar 

  • Jordan S, Simon C, Polhemus D, 2003. Molecular systematics and adaptive radiation of Hawaii’s endemic damselfly genusMegalagrion. Syst Biol 52: 89–109.

    Article  PubMed  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF, 2001. The closest living relative of land plants. Science 294: 2351–2353.

    Article  PubMed  CAS  Google Scholar 

  • Kauff F, Lutzoni F, 2002. Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25: 138–156.

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Hasegawa M, 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29: 170–179.

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski B, Thornton JW, 2006. Is there a star tree paradox? Mol Biol Evol 23: 1819–1823.

    Article  PubMed  CAS  Google Scholar 

  • Koepfli K-P, Wayne RK, 2003. Type I STS markers of more informative than cytochromeb in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). Syst Biol 52: 571–593.

    Article  PubMed  Google Scholar 

  • Krajewski C, Dickerman AW, 1990. Bootstrap analysis of phylogenetic trees derived from DNA hybridization distances. Syst Zool 39: 383–390.

    Article  Google Scholar 

  • Künsch H, 1989. The jackknife and the bootstrap for general stationary observations. Ann Statist 17: 1217–1241.

    Article  Google Scholar 

  • Lanyon SM, 1985. Detecting internal inconsistencies in distance data. Syst Zool 34, 397–403.

    Article  Google Scholar 

  • Lapointe F-J, Kirsch JAW, Bleiweiss R, 1994. Jackknifing of weighted trees: validation of phylogenies reconstructed from distance matrices. Mol Phylogenet Evol 3: 256–267.

    Article  PubMed  CAS  Google Scholar 

  • Larget B, Simon D, 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16: 750–759.

    CAS  Google Scholar 

  • Lecointre G, Philippe H, Le HLV, Le Guyader H, 1993. Species sampling has a major impact on phylogenetic inference. Mol Phylogenet Evol 2: 205–224.

    Article  PubMed  CAS  Google Scholar 

  • Leache ADT, Reeder W, 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): A comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol 51: 44–68.

    Article  PubMed  Google Scholar 

  • Lee MSY, 2000. Tree robustness and clade significance. Syst Biol 49: 829–836.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon AR, Moriarty EC, 2004. The importance of proper model assumption in Bayesian phylogenetics. Syst Biol 53: 265–277.

    Article  PubMed  Google Scholar 

  • Lewis PO, Holder MT, Holsinger KE, 2005. Polytomies and Bayesian phylogenetic inference. Syst Biol 54: 241–53.

    Article  PubMed  Google Scholar 

  • Li W-H, 1989. A statistical test of phylogenies estimated from sequence data. Mol Biol Evol 6: 424–435.

    PubMed  CAS  Google Scholar 

  • Li W-H, Gouy M, 1990. Statistical tests of molecular phylogenies. Methods Enzymol 183: 645–659.

    Article  PubMed  CAS  Google Scholar 

  • Lunter GA, Miklós I, Drummond AJ, Jensen JL, Hein J, 2005. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinform 6: 83.

    Article  CAS  Google Scholar 

  • Mar JC, Harlow TJ, Ragan MA, 2005. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation. BMC Evol Biol 5: 8.

    Article  PubMed  CAS  Google Scholar 

  • Margush T, McMorris FR, 1981. Consensusn-trees. Bull Math Biol 43: 239–244.

    Google Scholar 

  • Marshall CR, 1991. Statistical tests and bootstrapping: assessing the reliability of phylogenies based on distance data. Mol Biol Evol 8: 386–391.

    PubMed  CAS  Google Scholar 

  • Metropolis N, Rosenbluth AE, Rosenbluth MN, Teller AH, Teller E, 1953. Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092.

    Article  CAS  Google Scholar 

  • Miller RE, Buckley TR, Manos P, 2002. An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference. Syst Biol 51: 740–753.

    Article  PubMed  Google Scholar 

  • Misawa K, Nei M, 2003. Reanalysis of Murphy et al.’s data gives various mammalian phylogenies and suggests overcredibility of Bayesian trees. J Mol Evol 57: S290-S296.

    Article  PubMed  CAS  Google Scholar 

  • Mort ME, Soltis PS, Soltis DE, Mabry M, 2000. Comparison of three methods for estimating internal support on phylogenetic trees. Syst Biol 49: 160–171.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, O’brien SJ, Madsen O, Scally M, Douady CJ, et al. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Stephens JC, Saitou N, 1985. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol Biol Evol 2: 66–85.

    PubMed  CAS  Google Scholar 

  • Nieselt-Struwe K, von Haeseler A 2001. Quartet-mapping, a generalization of the likelihood-mapping procedure. Mol Biol Evol 18: 1204–1219.

    PubMed  CAS  Google Scholar 

  • Ota R,Waddell PJ, Hasegawa M, Shimodaira H, Kishino H, 2000. Appropriate likelihood ratio tests and marginal distributions for evolutionary tree models with constraints on parameters. Mol Biol Evol 17: 798–803.

    PubMed  CAS  Google Scholar 

  • Oxelman B, Backlund M, Bremer B, 1999. Relationships of the Buddlejaceaes. l. investigated using parsimony jackknife and branch support analysis of chloroplastndhF andrbcL sequence data. Syst Bot 24: 164–182.

    Article  Google Scholar 

  • Poe S, 1998. Sensitivity of phylogeny estimation to taxonomic sampling. Syst Biol 47: 18–31.

    Article  PubMed  CAS  Google Scholar 

  • Quenouille MH, 1956. Note on bias and estimation. Biometrika 43: 353–360.

    Google Scholar 

  • Redelings BD, Suchard MA, 2005. Joint Bayesian estimation of alignment and phylogeny. Syst Biol 54: 401–418.

    Article  PubMed  Google Scholar 

  • Reed DL, Carpenter KE, deGravelle MJ, 2002. Molecular systematics of the jacks (Perciformes: Carangidae) based on mitochondrial cytochromeb sequences using parsimony, likelihood, and Bayesian approaches. Mol Phylogenet Evol 23: 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo AG, 1993. Calibrating the bootstrap test of monophyly. Int J Parasitol 23: 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Williams BL, King N, Carrol SB, 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798–804.

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky A, Nei M, 1992a. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967.

    CAS  Google Scholar 

  • Rzhetsky A, Nei M, 1992b. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35: 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky A, Nei M, 1993. Theoretical foundation of the minimum evolution method of phylogenetic inference. Mol Biol Evol 10: 1073–1095.

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sanderson MJ, 1989. Confidence limits on phylogenies: the bootstrap revisited. Cladistics 5: 113–129.

    Article  Google Scholar 

  • Sanderson MJ, Wojciechowski MF, 2000. Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). Syst Biol 49: 671–685.

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan R, Wróbel B, 2005. Weighted least-squares likelihood ratio test for branch testing in phylogenies reconstructed from distance measures. Syst Biol 54: 218–229.

    Article  PubMed  Google Scholar 

  • Shi X, Gu H, Susko E, Field C, 2005. The comparison of the confidence regions in phylogeny. Mol Biol Evol 22: 2285–2296.

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M, 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16: 1114–1116.

    CAS  Google Scholar 

  • Shoup S, Lewis L, 2003. Polyphyletic origin of parallel basal bodies in swimming cells of chlorophycean green algae (Chlorophyta). J Phycol 39: 789–796.

    Article  CAS  Google Scholar 

  • Siddall ME, 1995. Another monophyly index: revisiting the jackknife. Cladistics 11: 33–56.

    Article  Google Scholar 

  • Siddall ME, Whiting MF, 1999. Long-branch abstractions. Cladistics 15: 9–24.

    Article  Google Scholar 

  • Sitnikova T, Rzhetsky A, Nei M, 1995. Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol 12: 319–333.

    PubMed  CAS  Google Scholar 

  • Sitnikova T, 1996. Bootstrap method of interior-branch test for phylogenetic tress. Mol Biol Evol 13: 605–611.

    PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE, 2003. Applying the bootstrap in phylogeny reconstruction. Stat Sci 18: 256–267.

    Article  Google Scholar 

  • Steel M, Matsen FA, 2007. The Bayesian “star paradox” persists for long fine sequences. Mol Biol Evol 24: 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J, 2004. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53: 533–553.

    Article  PubMed  Google Scholar 

  • Streelman JT, Alfaro ME, Westneat MW, Bellwood DR, Karl SA, 2002. Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56: 961–971.

    PubMed  CAS  Google Scholar 

  • Strimmer K, von Haeseler A, 1996. Quartet Puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13: 964–969.

    CAS  Google Scholar 

  • Strimmer K, von Haeseler A, 1997. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94: 6815–6819.

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K, Rambaut A, 2002. Inferring confidence sets of possibly misspecified gene trees. Proc R Soc Lond Ser B 269: 137–142.

    Article  Google Scholar 

  • Sullivan J, Markert JA, Kilpatrick CW, 1997. Phylogeography and molecular systematics of thePeromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol 46: 426–440.

    PubMed  CAS  Google Scholar 

  • Susko E, 2003. Confidence regions and hypothesis tests for topologies using generalized least squares. Mol Biol Evol 20: 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Glazko GV, Nei M, 2002. Overcredibility of molecular phylogenetics obtained by Bayesian phylogenetics. Proc Natl Acad Sci USA 99: 16138–16143.

    Article  PubMed  CAS  Google Scholar 

  • Svennblad B, Erixon P, Oxelman B, Britton T, 2006. Fundamental differences between the methods of maximum likelihood and maximum posterior probability in phylogenetics. Syst Biol 55L: 116–121.

    Article  Google Scholar 

  • Swofford DL, 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM, 1996. Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK, eds. Molecular systematics, Sunderland, MA: Sinauer Associates: 407–514.

    Google Scholar 

  • Tajima F, 1992. Statistical method for estimating the standard errors of branch lengths in a phylogenetic tree reconstructed without assuming equal rates of nucleotide substitution among different lineages. Mol Biol Evol 9: 168–181.

    PubMed  CAS  Google Scholar 

  • Taylor DJ, Piel WH, 2003. An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol Biol Evol 21: 1534–1537.

    Article  CAS  Google Scholar 

  • Tuffley C, Steel M, 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull Math Biol 59: 581–607.

    Article  PubMed  CAS  Google Scholar 

  • Tukey JW, 1958. Bias and confidence in no quite large samples. Ann Math Stat 29: 614.

    Article  Google Scholar 

  • Waddell PJ, Kishino H, Ota R, 2002. Very fast algorithms for evaluating the stability of ML and Bayesian phylogenetic trees from sequence data. Genome Inform 13: 82–92.

    PubMed  CAS  Google Scholar 

  • Waddell PJ, Steel MA, 1997. General timereversible distances with unequal rates across sites: Mixing G and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8: 398–414.

    Article  PubMed  CAS  Google Scholar 

  • Werman SD, Springer MS, Britten RJ, 1996. Nucleic acids I: DNA-DNA hybridization. In: Hillis DM, Moritz C, Mable BK, eds. Molecular systematics, Sunderland, MA: Sinauer Associates: 169–203.

    Google Scholar 

  • Whittingham LA, Slikas B, Winkler DW, Sheldon FH, 2002. Phylogeny of the tree swallow genus,Tachycineta (Aves: Hirundinidae), by Bayesian analysis of mitochondrial DNA sequences. Mol Phylogenet Evol 22: 430–441.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM, 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25: 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Wróbel B, Torres-Puente M, Jimenez N, Bracho M, Garcia-Robles I, Moya A, Gonzalez-Candelas F, 2006. Analysis of the overdispersed clock in the short-term evolution of Hepatitis C Virus: Using the E1/E2 gene sequences to infer infection dates in a single source outbreak. Mol Biol Evol 23: 1242–1251.

    Article  PubMed  CAS  Google Scholar 

  • Wróbel B, Wegrzyn G, 2002. Evolution of lambdoid replication modules. Virus Genes 24: 163–171.

    Article  PubMed  Google Scholar 

  • Wysocka A, Konopa G, Wegrzyn G, Wróbel B, 2006. Genomic DNA hybridization as an attempt to evaluate phylogenetic relationships of Ostracoda. Crustaceana 79: 1309–1322.

    Article  Google Scholar 

  • Yang Z, Rannala B, 2005. Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol 54: 455–470.

    Article  PubMed  Google Scholar 

  • Zharkikh A, Li W-H, 1992a. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. Mol Biol Evol 9: 1119–1147.

    PubMed  CAS  Google Scholar 

  • Zharkikh A, Li W-H, 1992b. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. II. Four taxa without a molecular clock. J Mol Evol 35: 356–366.

    Article  PubMed  CAS  Google Scholar 

  • Zharkikh A, Li W-H, 1995. Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol Phyl Evol 4: 44–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Wróbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wróbel, B. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J Appl Genet 49, 49–67 (2008). https://doi.org/10.1007/BF03195249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195249

Keywords

Navigation