Skip to main content

Bioconversion of cellulosic materials to ethanol by filamentous fungi

  • Chapter
  • First Online:
Book cover Enzymes and Products from Bacteria Fungi and Plant Cells

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 45))

Abstract

The microbial production of ethanol and other solvents from renewable biomass is an attractive alternative to fuels and basic chemical feedstocks. Considerable efforts have been made in the past 10 years to improve the production of altenative fuel chemicals by various biological systems. Much current interest is focussed on the processes based on cellulosic and hemicellulosic feedstocks, the hydrolyzates of which contain a complex mixture of sugars. The technology to convert hexoses to ethanol is well established, however, conversion of pentoses and other sugars poses problems. Filamentous fungi belonging to the genera Fusarium, Monilia and Neurospora have been identified as potential organisms in recent years, that can convert cellulose directly to ethanol. Some species belonging to Fusarium, Mucor and Paecilomyces were also found to efficiently convert xylose to ethanol with high yields. Some fungal strains exhibited relatively higher ethanol and sugar tolerance. However, the major disadvantage with mycelial fungi for ethanol production is the slow bioconversion rate when compared to yeast. Potential bioethanol producing fungal strains, production of extracellular polysaccharases (cellulases and xylanases) and bioconversion of various carbohydrates are reviewed. The factors playing a significant role in determining culture variables and performance in lignocellulosic hydrolysate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipinski CV (1981) Science 212: 1466

    Google Scholar 

  2. Rosenberg SL (1980) Enz Microb Technol 2: 185

    Google Scholar 

  3. Klausmier WH (1983) Biotechnol Bioeng Symp 13: 81

    Google Scholar 

  4. Soltes EJ, Lin SCK (1983) Biotechnol Bioeng Symp 13: 53

    Google Scholar 

  5. Reed TB, Milne T, Diebold J, Derosier R (1981) Biotechnol Bioeng Symp 11: 137

    Google Scholar 

  6. Zeikus JG (1980) Ann Rev Microbiol 34: 423

    Google Scholar 

  7. Keim CR (1983) Enz Microb Technol 5: 103

    Google Scholar 

  8. Ladisch MR (1979) Proc Biochem 14: 21

    Google Scholar 

  9. Bullock JD (1979) Industrial alcohol. In: Bull AT, Ellwood, DC, Ratledge C (eds) Microbial Technology: Current Status and Future Prospects, Cambridge University Press, New York, p 309

    Google Scholar 

  10. Tsao GT (1978) Proc Biochem 13: 12

    Google Scholar 

  11. Stewart GG, Panchal CJ, Russel I, Sills AM (1984) CRC Crit Rev Biotechnol 1: 161

    Google Scholar 

  12. Schneider H, Wang PY, Chan YK, Maleszka R (1981) Biotechnol Lett 3: 89

    Google Scholar 

  13. Ueng PP, Gong CS (1982) Enz Microb Technol 4: 169

    Google Scholar 

  14. Jeffries TW (1984) Trends Biotechnol 3: 208

    Google Scholar 

  15. Wang DIC, Averingos GC, Biocic I, Wang SD, Fang HW (1983) Phil Trans Roy Soc London 300: 323

    Google Scholar 

  16. Jones RP, Pamment N, Greenfield PF (1981) Proc Biochem 16: 42

    Google Scholar 

  17. Hoffman H, Kuhlman W, Meyer H-D, Schügerl K. (1985) J Memb Sci 22: 235

    Google Scholar 

  18. Frick C, Schügerl K (1986) Appl Microbiol Biotechnol 25: 186

    Google Scholar 

  19. Zeikus JG, Ben-Bassat A, Ng TK, Lamed RJ (1981) Thermophilic ethanol fermentation. In: Hollaender A (ed) Trends in the Biology of Fermentation for Fuels and Chemicals, Plenum Press, New York, p 44

    Google Scholar 

  20. Rogers PL, Lee KJ, Tribe DE (1979) Biotechnol Lett 1: 165

    Google Scholar 

  21. Doelle HW (1982) Eur J Appl Microbiol Biotechnol 15: 20

    Google Scholar 

  22. Cromie S, Doelle HW (1981) Eur J Appl Microbiol Biotechnol 11: 16

    Google Scholar 

  23. Cromie S, Doelle HW (1982) Eur. J Appl Microbiol Biotechnol 14: 69

    Google Scholar 

  24. Dawes EA, Ribbons DW, Rees DA (1966) Biochem J 98: 804

    Google Scholar 

  25. Lee JH, Williamson D, Rogers PL (1981) Biotechnol Lett 3: 291

    Google Scholar 

  26. Karsh T, Stahl U, Esser K (1983) Eur J Appl Microbiol Biotechnol 18: 383

    Google Scholar 

  27. Rose AH, Harrison JS (1971) The Yeasts, Vol 2 & 3, Academic Press, New York

    Google Scholar 

  28. Lowitt RW, Kim BH, Shen G-J, Zeikus JG (1988) CRC Crit Rev Biotechnol 7: 107

    Google Scholar 

  29. Marwaha SS, Kennedy JF (1984) Enz Microb Technol 6: 18

    Google Scholar 

  30. Frelot D, Moulin G, Galzy P (1982) Biotechnol Lett 4: 411

    Google Scholar 

  31. Margarits A, Bajpai P, Cannel E (1981) Biotechnol Lett 3: 595

    Google Scholar 

  32. O'Leary VS, Sutton C, Bencivengo M, Sullivan B, Holsinger VA (1977) Biotechnol Bioeng 19: 1689

    Google Scholar 

  33. Enari T-M, Suihko M-L (1984) CRC Crit Rev Biotechnol 1: 229

    Google Scholar 

  34. Schneider H (1989) CRC Crit Rev Biotechnol 9: 1

    Google Scholar 

  35. Pelvako EA, Czeban ME (1935) Mikrobiologiya 4: 86

    Google Scholar 

  36. Wang PY, Shopsis C, Schneider H (1980) Biochem Biophys Res Comm 94: 248

    Google Scholar 

  37. Wang PY, Johnson BF, Schneider H (1980) Biotechnol Lett 3: 273

    Google Scholar 

  38. Silinger PJ, Botahst RJ, van Cauwenberge JE, Kurtzman CP (1982) Biotechnol Bioeng 24: 371

    Google Scholar 

  39. Sreenath HK, Chapman TW, Jeffries TW (1986) Appl Microbiol Biotechnol 24: 294

    Google Scholar 

  40. Schvester P, Robinson CW, Moo-Young M (1983) Biotechnol Bioeng Symp 13: 131

    Google Scholar 

  41. Gong CS, Chen LF, Flickinger MC, Chiang LC, Tsao GT (1981) Appl Environ Microbiol 41: 430

    Google Scholar 

  42. Karczewska H (1959) CR Trav Lab Carlsberg 31: 251

    Google Scholar 

  43. Schneider H (1982) The production of ethanol from d-xylose by yeasts. In: Proc. Roy Soc Can Int Symp Ethanol From Biomass, Winnipeg, p 508

    Google Scholar 

  44. Maleszka R, Veliky IA, Schneider H (1981) Biotechnol Lett 3: 415

    Google Scholar 

  45. Kosaric N, Ng DCM, Russel I, Stewart GG (1982) Adv Appl Microbiol 24: 147

    Google Scholar 

  46. Spangler DJ, Emert GH (1986) Biotechnol Bioeng 28: 115

    Google Scholar 

  47. Ooshima H, Ishtani Y, Harano Y (1985) Biotechnol Bioeng 27: 389

    Google Scholar 

  48. Spindler DD, Wyman, CE, Grohmann K (1989) Biotechnol Bioeng 34: 189

    Google Scholar 

  49. Deshpande V, Sivaraman H, Rao M (1983) Biotechnol Bioeng 25: 1679

    Google Scholar 

  50. Saddler JN, Hogan C, Chan MKH, Louis-Seize G (1982) Can J Microbiol 28: 1311

    Google Scholar 

  51. Ghosh P, Pamment NB, Martin WRB (1982) Enz Microb Technol 4: 425

    Google Scholar 

  52. Klyosov AA, Consultant V (1986) Appl Biochem Biotechnol 12: 249

    Google Scholar 

  53. Szczodrak J, Targonski Z (1988) Biotechnol Bioeng 31: 300

    Google Scholar 

  54. Chen S, Wayman M (1989) Proc Biochem 24: 204

    Google Scholar 

  55. Cooney CL, Wang DIC, Wang S-D, Gordon J, Jiminez M (1978) Biotechnol Bioeng Symp 8: 103

    Google Scholar 

  56. Florenzano G, Poulain M, Goma G (1984) Biomass 4: 295

    Google Scholar 

  57. Saddler JN, Chan MKH, Seize GL, (1981) Biotechnol Lett 3: 321

    Google Scholar 

  58. Ng TK, Bassat AB, Zeikus JG (1981) Appl Environ Microbiol 41: 1337

    Google Scholar 

  59. Hynn HH, Shen GJ, Zeikus JG (1985) J Bacteriol 164: 1153

    Google Scholar 

  60. Averinos GC, Fang HY, Biocic I, Wang DIC (1981) Adv Biotechnol 2: 119

    Google Scholar 

  61. Gong CS, Mann CM, Tsao GT (1981) Biotechnol Lett 3: 77

    Google Scholar 

  62. Rao M, Deshpande V, Keskar S, Srinivasan MC (1983) Enz Microb Technol 5: 133

    Google Scholar 

  63. Deshpande V, Keskar S, Mishra C, Rao M (1986) Enz Microb Technol 8: 149

    Google Scholar 

  64. Christakopoulos P, Macris BJ, Kekos D (1989) Enz Microb Technol 11: 236

    Google Scholar 

  65. Christakopoulos P, Macris BJ, Kekos D (1990) Appl Microbiol Biotechnol 33: 18

    Google Scholar 

  66. Kumar PKR, Singh A, Schügerl K (1991) Appl Microbiol Biotechnol 34: 570–572

    Google Scholar 

  67. Singh A (1988) Biochemical studies on utilization of agricultural wastes using cellulolytic fungi. Thesis, N.D. University of Agriculture and Technology, India

    Google Scholar 

  68. Marsden WL, Gray PP (1986) CRC Crit Rev Biotechnol 3: 235

    Google Scholar 

  69. Jeffries TW (1983) Adv Biochem Eng Biotechnol 27: 2

    Google Scholar 

  70. Rogers PL, Lee KJ, Tribe DE (1980) Adv Biochem Eng Biotechnol 23: 37

    Google Scholar 

  71. Swings J, De Ley I (1977) Bacteriol Rev 41: 1

    Google Scholar 

  72. Zeikus JG (1979) Enz Microb Technol 1: 243

    Google Scholar 

  73. Schneider H, Maleszka R, Neirinck L, Veliky IA, Wang PY, Chan YK (1983) Adv Biochem Eng/Biotechnol 25: 57

    Google Scholar 

  74. Skoog K, Hahn-Hägerdal B (1988) Enz Microb Technol 10: 66

    Google Scholar 

  75. Cochrane VW (1958) Physiology of Fungi, John Wiley and Sons Inc., London, p 214

    Google Scholar 

  76. Perlman D (1950) Am J Bot 37: 237

    Google Scholar 

  77. Suihko M-L, Enari T-M (1981) Biotechnol Lett 3: 723

    Google Scholar 

  78. Batter TR, Wilke CR (1977) A study of the fermentation of xylose to ethanol by Fusarium oxysporum Energy and environment division, Lawrence Berkley Laboratory, University of California, Berkley, 1977

    Google Scholar 

  79. Antonopoulos AA, Wene EG (1984) Phytopathol 74: 1268

    Google Scholar 

  80. Rosenberg SI, Batter TR, Blanch HW, Wilke CR (1981) AIChE Symp Ser 77, 107

    Google Scholar 

  81. Suihko M-L (1983) Biotechnol Lett 5: 721

    Google Scholar 

  82. Linko M, Viikari L, Suihko ML (1984) Biotechnol Adv 2: 233

    Google Scholar 

  83. Waksman SA, Foster JW (1938) J Agri Res 57: 873

    Google Scholar 

  84. Ward GE, Lockwood LB, Tabenkin B, Well PA (1938) Ind Eng Chem 30: 1233

    Google Scholar 

  85. Perlman D (1949) Am J Bot 36: 180

    Google Scholar 

  86. Wu JF, Lastick SM, Updegraff DM (1986) Nature 321, 887

    Google Scholar 

  87. Anderson AK (1924) Minn St Plant Sci 5: 237

    Google Scholar 

  88. Letcher H, Willmann JJ (1926) Phytopathol 16: 941

    Google Scholar 

  89. Antonopoulos AA (1979) Fusarium species: Their potential for transforming biomass to ethanol. Energy and Environmental Systems Division, Argonne National Laboratory, Argonne, Illinois 60439

    Google Scholar 

  90. Fiechter A, Furhmann GF, Käppeli O (1981) Adv Microb Physiol 35: 454

    Google Scholar 

  91. Chiang C, Knight SG (1959) Biochim Biophys Acta 35: 454

    Google Scholar 

  92. Chiang C, Knight SG (1960) Nature 118: 79

    Google Scholar 

  93. Suhiko M-L, Suomalainen I, Enari T-M (1983) Biotechnol Lett 5: 525

    Google Scholar 

  94. Tomoyeda M, Horitsn H (1964) Agric Biol Res 28: 139

    Google Scholar 

  95. Horitsu H (1973) Proc 3rd Int Spec Symp Yeasts, Helsinki, p 136

    Google Scholar 

  96. Hofer M, Betz A, Kotyk A (1971) Biochem Biophys Acta 252: 1

    Google Scholar 

  97. Zanek J, Kalecikova B, Kuniak L, Kucas S, Kockovakratochvilova A (1986) Acta Aliment 15: 111

    Google Scholar 

  98. Chiang C, Knight SG (1960) Biochem Biophys Res Comm 3: 554

    Google Scholar 

  99. Peixoto BG, Viega LA (1974) Arq Biol Technol 17: 87

    Google Scholar 

  100. Gibbs M, Cochrane VW, Paege LM, Wolin H (1951) Arch Biochem Biophys 33: 346

    Google Scholar 

  101. Coleman RJ, Nord FF (1951) Arch Biochem Biophys 33: 346

    Google Scholar 

  102. Halliwell G, (1961) Biochem J 79: 185

    Google Scholar 

  103. Halliwell G, Griffin M (1973) J Gen Microbiol 216: 211

    Google Scholar 

  104. Alexander M (1977) Introduction to Soil Microbiology, Wiley Eastern Ltd., New Delhi, p 386

    Google Scholar 

  105. Pathak AN, Ghosh TK (1973) Proc Biochem 8: 35

    Google Scholar 

  106. Mandels M, Weber J, Adv Biochem Ser 95: 391

    Google Scholar 

  107. Shewale JG, Sadana JC (1978) Can J Microbiol 24: 1204

    Google Scholar 

  108. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Bioconversion of agricultural lignocellulosic residues for the production of protein and cellulase in solid state culture. “Application of Biotechnology for Agriculture and Rural Development”, NIRD, Hyderabad, p 68

    Google Scholar 

  109. Tangnu SK, Blanch HW, Wilke CR (1981) Biotechnol Bioeng 23: 1837

    Google Scholar 

  110. Ishaque M, Kluepfel D (1981) Biotechnol Lett 3: 481

    Google Scholar 

  111. Viikari L, Klemola M, Linko M (1978) Production of xylanases. Proc. Bioconversion in Food Technology, Helsinki, p 115

    Google Scholar 

  112. Mishra C, Keskars, Rao M (1984) Appl Environ Microbiol 48, 224

    Google Scholar 

  113. Lynd LR (1989) Adv Biochem Eng/Biotechnol 38: 1

    Google Scholar 

  114. Chiang LC, Hsiao HY, Flickinger MC, Chen LF, Tsao GT (1982) Enz Microb Technol 4: 93

    Google Scholar 

  115. Kumar PKR, Lonsane BK (1989) Adv Appl Microbiol 34: 29

    Google Scholar 

  116. Schneider H (1989) Conversion of hemicelluloses into ethanol. In: Chahal DS (ed) Food, Feed and Fuel from Biomass, Oxford and I.B.H. Publishing C, New Delhi

    Google Scholar 

  117. Silinger PJ, Bothast RJ, Okos MR, Ladisch MR (1985) Biotechnol Lett 7: 431

    Google Scholar 

  118. Jeffries, TW, Fady JH, Lightfoot, FN (1985) Biotechnol Lett 7: 171

    Google Scholar 

  119. du Preez JC, Bosch M, Prior BA (1986) Enz Microb Technol 8: 360

    Google Scholar 

  120. Sale A (1967) Regulation of carbohydrate transport and metabolism in yeast. In: Mills AK, Krebs H (Eds) Aspects of Yeast Metabolism, F. A. Davies & Co., Philadelphia, p 45

    Google Scholar 

  121. Chung IS, Lee YY (1986) Enz Microb Technol 8: 503

    Google Scholar 

  122. Mahmourides G, Lee H, Maki N, Schneider H (1985) Bio/Technology 3: 59

    Google Scholar 

  123. D'Amore T, Stewart GG (1987) Enz Microb Technol 9: 322

    Google Scholar 

  124. Takagawa T, Wmezu M (1979) J Gen Appl Microbiol 25: 41

    Google Scholar 

  125. Lee YY and McCaskey TA (1983) Tappi J 66: 102

    Google Scholar 

  126. Hueting S, Tempest DW (1977) Arch Microbiol 115: 73

    Google Scholar 

  127. Singh, A, Kumar, PKR, Schügerl, K (1991) in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Singh, A., Kumar, P.K.R., Schügerl, K. (1992). Bioconversion of cellulosic materials to ethanol by filamentous fungi. In: Enzymes and Products from Bacteria Fungi and Plant Cells. Advances in Biochemical Engineering/Biotechnology, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008755

Download citation

  • DOI: https://doi.org/10.1007/BFb0008755

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55106-5

  • Online ISBN: 978-3-540-46725-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics