Skip to main content

Advertisement

Log in

Sjögren’s syndrome: An old tale with a new twist

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Sjögren’s syndrome (SjS) is chronic autoimmune disease manifested by the loss of saliva and/or tear secretion by salivary and/or lacrimal glands, respectively. The pathogenesis of the disease remains elusive, perhaps due to the multiple triggers of the disease. However, substantial advances have been made in attempting to resolve the complexity of SjS using both animal models and human subjects. The primary objectives of this review are to provide a better understanding of the disease processes with major emphasis on the use of mouse models, how genetic predisposition plays a role in the natural history of the disease, as well as a presentation of new findings pertaining to the role of TH1, TH2, and TH17 cells in the pathogenesis of SjS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Ajees A, Gunasekaran K, Volanakis JE et al(2006) The structure of complement C3b provides insights into complement activation and regulation. Nature 444: 221-25

    Article  CAS  PubMed  Google Scholar 

  • Ambrosetti A, Zanotti R, Pattaro C et al(2004) Most cases of primary salivary mucosa-associated lymphoid tissue lymphoma are associated either with Sjoegren syndrome or hepatitis C virus infection. Br J Haematol 126: 43-9

    Article  PubMed  Google Scholar 

  • Andrews BS, Eisenberg RA, Theofilopoulos AN et al(1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148: 1198-215

    Article  CAS  PubMed  Google Scholar 

  • Argueso P, Balaram M, Spurr-Michaud S et al(2002) Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjogren syndrome. Invest Ophthalmol Vis Sci 43: 1004-011

    PubMed  Google Scholar 

  • Batten M, Fletcher C, Ng LG et al(2004) TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. J Immunol 172: 812-22

    CAS  PubMed  Google Scholar 

  • Baum PR, Gayle RB 3rd, Ramsdell F et al(1994) Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J 13: 3992-001

    CAS  PubMed  Google Scholar 

  • Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114: 4143-151

    CAS  PubMed  Google Scholar 

  • Bettelli E, Carrier Y, Gao W et al(2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-38

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Korn T, Oukka M et al(2008) Induction and effector functions of T(H)17 cells. Nature 453: 1051-057

    Article  CAS  PubMed  Google Scholar 

  • Bolstad AI, Jonsson R (2002) Genetic aspects of Sjogren’s syndrome. Arthritis Res 4: 353-59

    Article  PubMed  Google Scholar 

  • Bolstad AI, Wargelius A, Nakken B et al(2000) Fas and Fas ligand gene polymorphisms in primary Sjogren’s syndrome. J Rheumatol 27: 2397-405

    CAS  PubMed  Google Scholar 

  • Bombardieri M, Barone F, Pittoni V et al(2004) Increased circulating levels and salivary gland expression of interleukin-18 in patients with Sjogren’s syndrome: relationship with autoantibody production and lymphoid organization of the periductal inflammatory infiltrate. Arthritis Res Ther 6: R447-56

    Article  CAS  PubMed  Google Scholar 

  • Brayer JB, Cha S, Nagashima H et al(2001) IL-4-dependent effector phase in autoimmune exocrinopathy as defined by the NOD. IL- 4(gene knockout mouse model of Sjogren’s syndrome. Scand J Immunol 54): 133-40

    Google Scholar 

  • Brayer J, Lowry J, Cha S et al(2000) Alleles from chromosomes 1 and 3 of NOD mice combine to influence Sjogren’s syndrome-like autoimmune exocrinopathy. J Rheumatol 27: 1896-904

    CAS  PubMed  Google Scholar 

  • Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16: 545-68

    Article  CAS  PubMed  Google Scholar 

  • Cha S, Brayer J, Gao J et al(2004) A dual role for interferongamma in the pathogenesis of Sjogren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol 60: 552-65

    Article  CAS  PubMed  Google Scholar 

  • Crouse CA, Pflugfelder SC, Cleary T et al(1990) Detection of Epstein-Barr virus genomes in normal human lacrimal glands. J Clin Microbiol 28: 1026-032

    CAS  PubMed  Google Scholar 

  • Cua DJ, Sherlock J, Chen Y et al(2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421: 744-48

    Article  CAS  PubMed  Google Scholar 

  • De Vita S, Boiocchi M, Sorrentino D et al(1997) Characterization of prelymphomatous stages of B cell lymphoproliferation in Sjogren’s syndrome. Arthritis Rheum 40: 318-31

    Article  CAS  PubMed  Google Scholar 

  • Delaleu N, Immervoll H, Cornelius J et al(2008) Biomarker profiles in serum and saliva of experimental Sjogren’s syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther 10: R22

    Article  PubMed  CAS  Google Scholar 

  • Duerr RH, Taylor KD, Brant SR et al(2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461-463

    Article  CAS  PubMed  Google Scholar 

  • Fox RI, Kang HI (1992) Pathogenesis of Sjogren’s syndrome. Rheum Dis Clin North Am 18: 517-38

    CAS  PubMed  Google Scholar 

  • Fox RI, Luppi M, Pisa P et al(1992) Potential role of Epstein-Barr virus in Sjogren’s syndrome and rheumatoid arthritis. J Rheumatol Suppl 32: 18-4

    CAS  PubMed  Google Scholar 

  • Fox RI, Michelson P (2000) Approaches to the treatment of Sjogren’s syndrome. J Rheumatol Suppl 61: 15-1

    CAS  PubMed  Google Scholar 

  • Gao J (2004) Biological functions and molecular mechanisms of the interleukin 4 signaling pathways in autoimmune exocrinopathy using the NOD.B10.H2b mouse model of Sjögren’s syndrome. Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville

  • Gao J, Killedar S, Cornelius JG et al(2006) Sjogren’s syndrome in the NOD mouse model is an interleukin-4 time-dependent, antibody isotype-specific autoimmune disease. J Autoimmun 26: 90-03

    Article  CAS  PubMed  Google Scholar 

  • Gottenberg JE, Busson M, Loiseau P et al(2003) In primary Sjogren’s syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response. Arthritis Rheum 48: 2240-245

    Article  CAS  PubMed  Google Scholar 

  • Gottenberg JE, Busson M, Loiseau P et al(2004) Association of transforming growth factor beta1 and tumor necrosis factor alpha polymorphisms with anti-SSB/La antibody secretion in patients with primary Sjogren’s syndrome. Arthritis Rheum 50: 570-80

    Article  CAS  PubMed  Google Scholar 

  • Hansen A, Lipsky PE, Dorner T (2003) New concepts in the pathogenesis of Sjogren syndrome: many questions, fewer answers. Curr Opin Rheumatol 15: 563-70

    Article  PubMed  Google Scholar 

  • Harley JB, Alexander EL, Bias WB et al(1986) Anti-Ro (SS-A) and anti-La (SS-B) in patients with Sjogren’s syndrome. Arthritis Rheum 29: 196-06

    Article  CAS  PubMed  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR et al(2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123-132

    Article  CAS  PubMed  Google Scholar 

  • Helmick CG, Felson DT, Lawrence RC et al(2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 58: 15-5

    Article  Google Scholar 

  • Hoffman RW, Alspaugh MA, Waggie KS et al(1984) Sjogren’s syndrome in MRL/l and MRL/n mice. Arthritis Rheum 27: 157-65

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Wang J, Meijer J et al(2007) Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum 56: 3588-600

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Nakagawa Y, Purushotham KR et al(1992) Functional changes in salivary glands of autoimmune disease-prone NOD mice. Am J Physiol 263: E607-14

    CAS  PubMed  Google Scholar 

  • Hue S, Ahern P, Buonocore S et al(2006) Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203: 2473-483

    Article  CAS  PubMed  Google Scholar 

  • Humphreys-Beher MG, Brinkley L, Purushotham KR et al(1993) Characterization of antinuclear autoantibodies present in the serum from nonobese diabetic (NOD) mice. Clin Immunol Immunopathol 68: 350-56

    Article  CAS  PubMed  Google Scholar 

  • Humphreys-Beher MG, Hu Y, Nakagawa Y et al(1994) Utilization of the non-obese diabetic (NOD) mouse as an animal model for the study of secondary Sjogren’s syndrome. Adv Exp Med Biol 350: 631-36

    CAS  PubMed  Google Scholar 

  • Ito T, Wang YH, Duramad O et al(2006) OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci USA 103: 13138-3143

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L et al(2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126: 1121-133

    Article  CAS  PubMed  Google Scholar 

  • Jabs DA, Lee B, Whittum-Hudson JA et al(2000) Th1 versus Th2 immune responses in autoimmune lacrimal gland disease in MRL/Mp mice. Invest Ophthalmol Vis Sci 41: 826-31

    CAS  PubMed  Google Scholar 

  • Jabs DA, Prendergast RA, Campbell AL et al(2007) Autoimmune Th2-mediated dacryoadenitis in MRL/MpJ mice becomes Th1-mediated in IL-4 deficient MRL/MpJ mice. Invest Ophthalmol Vis Sci, 48: 5624-629

    Article  Google Scholar 

  • Jonsson R, Tarkowski A, Backman K et al(1987) Sialadenitis in the MRL-l mouse: morphological and immunohistochemical characterization of resident and infiltrating cells. Immunology 60: 611-16

    CAS  PubMed  Google Scholar 

  • Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25: 221-42

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Robinson CP, Peck AB et al(1998) Inappropriate apoptosis of salivary and lacrimal gland epithelium of immunodeficient NOD-scid mice. Clin Exp Rheumatol 16: 675-81

    CAS  PubMed  Google Scholar 

  • Kumagai S, Kanagawa S, Morinobu A (1997) Association of a new allele of the TAP2 gene, TAP2*Bky2 (Val577), with susceptibility to Sjogren’s syndrome. Arthritis Rheum 40: 1685-692

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Kunimoto K, Muraoka Y et al(1980) Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 29: 1-3

    CAS  PubMed  Google Scholar 

  • Mangan PR, Harrington LE, O’Quinn DB et al(2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231-34

    Article  CAS  PubMed  Google Scholar 

  • Manoussakis MN, Boiu S, Korkolopoulou P et al(2007) Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjogren’s syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum 56: 3977-988

    Article  CAS  PubMed  Google Scholar 

  • Morinobu A, Kanagawa S, Koshiba M et al(1999) Association of the glutathione S-transferase M1 homozygous null genotype with susceptibility to Sjogren’s syndrome in Japanese individuals. Arthritis Rheum 42: 2612-615

    Article  CAS  PubMed  Google Scholar 

  • Mustafa W, Zhu J, Deng G et al(1998) Augmented levels of macrophage and Th1 cell-related cytokine mRNA in submandibular glands of MRL/lpr mice with autoimmune sialoadenitis. Clin Exp Immunol 112: 389-96

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CQ, Cha SR, Peck AB (2007) Sjögren’s syndrome (SjS)-like disease of mice: the importance of B lymphocytes and autoantibodies. Front Biosci 12: 1767-789

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CQ, Cornelius JG, Cooper L et al(2008) Identification of possible candidate genes regulating Sjögren’s syndrome-associated autoimmunity: a potential role for Tnfsf4 in autoimmune exocrinopathy. Arthritis Res Ther 10: R137

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CQ, Gao JH, Kim H et al(2007) IL-4-STAT6 signal transduction-dependent induction of the clinical phase of Sjogren’s syndrome-like disease of the nonobese diabetic mouse. J Immunol 179: 382-90

    CAS  PubMed  Google Scholar 

  • Nguyen CQ, Hu MN, Li Y et al(2008) Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren’s syndrome: findings in humans and mice. Arthritis Rheum 58: 734-43

    Article  CAS  PubMed  Google Scholar 

  • Nguyen C, Singson E, Kim JY et al(2006) Sjogren’s syndrome-like disease of C57BL/6.NOD-Aec1 Aec2 mice: gender differences in keratoconjunctivitis sicca defined by a cross-over in the chromosome 3 Aec1 locus. Scand J Immunol 64: 295-07

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CQ, Sharma SA, She JX et al(2009) differential gene expressions in the lacrimal gland during development and onset of keratoconjunctivitis sicca in Sjogren’s Syndrome (SjS)-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Exp Eye Res (in press)

  • Nguyen KH, Brayer J, Cha S et al(2000) Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. Arthritis Rheum 43: 2297-306

    Article  CAS  PubMed  Google Scholar 

  • Park H, Li Z, Yang XO et al(2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6: 1133-141

    Article  CAS  PubMed  Google Scholar 

  • Pertovaara M, Lehtimaki T, Rontu R et al(2004) Presence of apolipoprotein E epsilon4 allele predisposes to early onset of primary Sjogren’s syndrome. Rheumatology 43: 1484-487

    Article  CAS  PubMed  Google Scholar 

  • Pflugfelder SC, Tseng SC, Pepose JS et al(1990) Epstein-Barr virus infection and immunologic dysfunction in patients with aqueous tear deficiency. Ophthalmology 97: 313-23

    CAS  PubMed  Google Scholar 

  • Ramos-Casals M, Trejo O, Garcia-Carrasco M et al(2004) Triple association between hepatitis C virus infection, systemic autoimmune diseases, and B cell lymphoma. J Rheumatol 31: 495-99

    PubMed  Google Scholar 

  • Ricchiuti V, Isenberg D, Muller S (1994) HLA association of anti-Ro60 and anti-Ro52 antibodies in Sjogren’s syndrome. J Autoimmun 7: 611-21

    Article  CAS  PubMed  Google Scholar 

  • Robinson CP, Yamamoto H, Peck AB et al(1996) Genetically programmed development of salivary gland abnormalities in the NOD (nonobese diabetic)-scid mouse in the absence of detectable lymphocytic infiltration: a potential trigger for sialoadenitis of NOD mice. Clin Immunol Immunopathol 79: 50-9

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Sugawara Y, Kuroishi T et al(2008) Identification of IL-18 and Th17 cells in salivary glands of patients with Sjogren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol 181: 2898-906

    CAS  PubMed  Google Scholar 

  • Shimazaki J, Goto E, Ono M et al(1998) Meibomian gland dysfunction in patients with Sjogren syndrome. Ophthalmology 105: 1485-488

    Article  CAS  PubMed  Google Scholar 

  • Singer GG, Abbas AK (1994) The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1: 365-71

    Article  CAS  PubMed  Google Scholar 

  • Sullivan DA (1997) Sex hormones and Sjogren’s syndrome. J Rheumatol Suppl 50: 17-2

    CAS  PubMed  Google Scholar 

  • Sullivan DA (2004) Androgen deficiency and dry eye syndromes. Arch Soc Esp Oftalmol 79: 49-0

    Article  CAS  PubMed  Google Scholar 

  • Sullivan DA, Krenzer KL, Sullivan BD et al(1999) Does androgen insufficiency cause lacrimal gland inflammation and aqueous tear deficiency. Invest Ophthalmol Vis Sci 40: 1261-265

    CAS  PubMed  Google Scholar 

  • Sullivan DA, Sullivan BD, Evans JE et al(2002) Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann N Y Acad Sci 966: 211-22

    Article  CAS  PubMed  Google Scholar 

  • Sullivan DA, Wickham LA, Rocha EM et al(1999) Androgens and dry eye in Sjogren’s syndrome. Ann N Y Acad Sci 876: 312-24

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Fossati L, Iwamoto M et al(1996) Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 97: 1597-604

    Article  CAS  PubMed  Google Scholar 

  • Teutsch SM, Booth DR, Bennetts BH et al(2003) Identification of 11 novel and common single nucleotide polymorphisms in the interleukin-7 receptor-alpha gene and their associations with multiple sclerosis. Eur J Hum Genet 11: 509-15

    Article  CAS  PubMed  Google Scholar 

  • Theofilopoulos AN, Dixon FJ (1985) Murine models of systemic lupus erythematosus. Adv Immunol 37: 269-39

    Article  CAS  PubMed  Google Scholar 

  • Toda I, Wickham LA, Sullivan DA (1998) Gender and androgen treatment influence the expression of proto-oncogenes and apoptotic factors in lacrimal and salivary tissues of MRL/lpr mice. Clin Immunol Immunopathol 86: 59-1

    Article  CAS  PubMed  Google Scholar 

  • Tsubota K, Mishima K, Obara K et al(2007) Reactive oxygen species can be controlled by the secretory glycoprotein, clusterin, from side population cells in the lacrimal gland: a new intervention for age-related dry eye disorders. In: Tear Film and Ocular Surface 2007, Taormina, Italy

  • Veldhoen M, Hocking RJ, Atkins CJ et al(2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179-89

    Article  CAS  PubMed  Google Scholar 

  • Voulgarelis M, Moutsopoulos HM (2003) Lymphoproliferation in autoimmunity and Sjogren’s syndrome. Curr Rheumatol Rep 5: 317-23

    Article  PubMed  Google Scholar 

  • Wahren M, Skarstein K, Blange I et al(1994) MRL/lpr mice produce anti-Ro 52,000 MW antibodies: detection, analysis of specificity and site of production. Immunology 83: 9-5

    CAS  PubMed  Google Scholar 

  • Wang H, Nakamura K, Inoue T et al(2004) Mannose-binding lectin polymorphisms in patients with Behcet’s disease. J Dermatol Sci 36: 115-17

    Article  CAS  PubMed  Google Scholar 

  • Watson ML, Rao JK, Gilkeson GS et al(1992) Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J Exp Med 176: 1645-656

    Article  CAS  PubMed  Google Scholar 

  • Weaver CT, Hatton RD, Mangan PR et al(2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821-52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Q. Nguyen.

About this article

Cite this article

Lee, B.H., Tudares, M.A. & Nguyen, C.Q. Sjögren’s syndrome: An old tale with a new twist. Arch. Immunol. Ther. Exp. 57, 57–66 (2009). https://doi.org/10.1007/s00005-009-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0002-4

Keywords

Navigation