Skip to main content
Log in

Dectin-1 and NOD2 mediate cathepsin activation in zymosan-induced arthritis in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Activation of pattern recognition receptors (PRR) may contribute to arthritis. Here, we elucidated the role of NOD2, a genetic cause of inflammatory arthritis, and several other PRR in a murine model of inflammatory arthritis.

Methods

The roles of CR3, TLR2, MyD88, NOD1, NOD2, Dectin-1 and Dectin-2 were tested in vivo in arthritis elicited by intra-articular injections of zymosan, the fungal cell wall components curdlan, laminarin and mannan, and the bacterial cell wall peptidoglycan.

Results

Dectin-1, and to a lesser extent Dectin-2, contributed to arthritis. TLR2, MyD88 and CR3 played non-essential roles. Observations based on injection of curdlan, laminarin or mannan supported the dominant role of the Dectin-1 pathway in the joint. We demonstrated differential roles for NOD1 and NOD2 and identified NOD2 as a novel and essential mediator of zymosan-induced arthritis.

Conclusions

Together, Dectin-1 and NOD2 are critical, sentinel receptors in the arthritogenic effects of zymosan. Our data identify a novel role for NOD2 during inflammatory responses within joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  PubMed  CAS  Google Scholar 

  2. McCormack WJ, Parker AE, O’Neill LA. Toll-like receptors and NOD-like receptors in rheumatic diseases. Arthritis Res Ther. 2009;11:243.

    Article  PubMed  Google Scholar 

  3. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Hafner R, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29:19–20.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenzweig HL, Jann MM, Glant T, Martin TM, Planck SR, Van Eden W, et al. Activation of nucleotide oligomerization domain 2 exacerbates a murine model of proteoglycan-induced arthritis. J Leukoc Biol. 2009;85:711–8.

    Article  PubMed  CAS  Google Scholar 

  5. Rosenzweig HL, Jann MJ, Vance EE, Planck SR, Rosenbaum JT, Davey MP. Nucleotide-binding oligomerization domain 2 and Toll-like receptor 2 function independently in a murine model of arthritis triggered by intraarticular peptidoglycan. Arthritis Rheum. 2010;62:1051–9.

    Article  PubMed  CAS  Google Scholar 

  6. Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365–98.

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe T, Asano N, Murray PJ, Ozato K, Tailor P, Fuss IJ, et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest. 2008;118:545–59.

    PubMed  CAS  Google Scholar 

  8. Moreira LO, Smith AM, Defreitas AA, Qualls JE, El Kasmi KC, Murray PJ. Modulation of adaptive immunity by different adjuvant-antigen combinations in mice lacking Nod2. Vaccine. 2008;26:5808–13.

    Article  PubMed  CAS  Google Scholar 

  9. Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39:2040–4.

    Article  PubMed  CAS  Google Scholar 

  10. Keystone EC, Schorlemmer HU, Pope C, Allison AC. Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum. 1977;20:1396–401.

    Article  PubMed  CAS  Google Scholar 

  11. Van de Loo FA, Joosten LA, Van Lent PL, Arntz OJ, Van den Berg WB. Role of interleukin-1, tumor necrosis factor alpha, and interleuking-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum. 1995;38:164–72.

    Article  PubMed  Google Scholar 

  12. Van de Loo FA, Kuiper S, van Enckevort FH, Arntz OJ, Van den Berg WB. Interleukin-6 reduces cartilage destruction during experimental arthritis. A study in interleukin-6-deficient mice. Am J Pathol. 1997;151:177–91.

    PubMed  Google Scholar 

  13. de Hooge AS, Van de Loo FA, Arntz OJ, Van den Berg WB. Involvement of IL-6, apart from its role in immunity, in mediating a chronic response during experimental arthritis. Am J Pathol. 2000;157:2081–91.

    Article  PubMed  Google Scholar 

  14. Van de Loo FA, Arntz OJ, Van Enckevort FH, van Lent PL, van den Berg WB. Reduced cartilage proteoglycan loss during zymosan-induced gonarthritis in NOS2-deficient mice and in anti-interleukin-1-treated wild-type mice with unabated joint inflammation. Arthritis Rheum. 1998;41:634–46.

    Article  PubMed  Google Scholar 

  15. van Meurs JB, Van Lent PL, Holthuysen AE, Singer II, Bayne EK, Van den Berg WB. Kinetics of aggrecanase- and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum. 1999;42:1128–39.

    Article  PubMed  Google Scholar 

  16. De Hooge AS, Van de Loo FA, Koenders MI, Bennink MB, Arntz OJ, Kolbe T, et al. Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: exacerbation of joint inflammation in STAT-1 gene-knockout mice. Arthritis Rheum. 2004;50:2014–23.

    Article  PubMed  Google Scholar 

  17. Goodridge HS, Underhill DM. Fungal recognition by TLR2 and Dectin-1. Handb Exp Pharmacol. 2008;183:87–109.

    Article  PubMed  CAS  Google Scholar 

  18. Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21:30–7.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169:3876–82.

    PubMed  CAS  Google Scholar 

  20. Herre J, Willment J, Gordon S, Brown GD. The role of Dectin-1 in antifungal immunity. Crit Rev Immunol. 2004;24:193–203.

    Article  PubMed  CAS  Google Scholar 

  21. Herre J, Gordon S, Brown GD. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol. 2004;40:869–76.

    Article  PubMed  CAS  Google Scholar 

  22. Lee HM, Yuk JM, Shin DM, Jo EK. Dectin-1 is inducible and plays an essential role for mycobacteria-induced innate immune responses in airway epithelial cells. J Clin Immunol. 2009;29:795–805.

    Article  PubMed  CAS  Google Scholar 

  23. Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosinase kinase in a dynamic subset of macrophages for reactive oxygen production. Blood. 2005;106:2543–50.

    Article  PubMed  CAS  Google Scholar 

  24. Willment J, Gordon S, Brown GD. Characterization of the human beta-glucan receptor and its alternatively spliced isoforms. J Biol Chem. 2001;276:43818–23.

    Article  PubMed  CAS  Google Scholar 

  25. Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev. 2010;234:335–52.

    Article  PubMed  CAS  Google Scholar 

  26. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungi immunity. Nature. 2006;442:651–6.

    Article  PubMed  CAS  Google Scholar 

  27. Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8:198–205.

    Article  PubMed  CAS  Google Scholar 

  28. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.

    Article  PubMed  CAS  Google Scholar 

  29. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.

    Article  PubMed  CAS  Google Scholar 

  30. Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006;116:1642–50.

    Article  PubMed  CAS  Google Scholar 

  31. Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem. 2003;278:41702–8.

    Article  PubMed  CAS  Google Scholar 

  32. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, et al. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 2002;196:407–12.

    Article  PubMed  CAS  Google Scholar 

  33. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med. 2003;197:1119–24.

    Article  PubMed  CAS  Google Scholar 

  34. Di Carlo FJ, Fiore JV. On the composition of zymosan. Science. 1958;127:756–7.

    Article  PubMed  CAS  Google Scholar 

  35. Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, et al. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol. 2005;6:618–25.

    Article  PubMed  CAS  Google Scholar 

  36. McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1-->3)-beta-d-glucans. Appl Microbiol Biotechnol. 2005;68:163–73.

    Article  PubMed  CAS  Google Scholar 

  37. Sabbah A, Chang TH, Harnack R, Froehlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol. 2009;10:1053–4.

    Article  Google Scholar 

  38. Shaw MH, Reimer T, Sanchez-Valdepenas C, Warner N, Kim YG, Fresno M, et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol. 2009;2009:1267–74.

    Article  Google Scholar 

  39. Cheng G, Sun J, Fridlender ZG, Wang LC, Ching LM, Albelda SM. Activation of the nucleotide oligomerization domain signaling pathway by the non-bacterially derived xanthone drug 5′6-dimethylxanthenone-4-acetic acid (Vadimezan). J Biol Chem. 2010;285:10553–62.

    Article  PubMed  CAS  Google Scholar 

  40. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem. 2006;281:5771–9.

    Article  PubMed  CAS  Google Scholar 

  41. Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6:33–43.

    Article  PubMed  CAS  Google Scholar 

  42. Frasnelli ME, Tarussio D, Chobaz-Peclat V, Busso N, So A. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res Ther. 2005;7:R370–9.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly MM, McNagny K, Williams DL, van Rooijen N, Maxwell L, Gwozd C, et al. The lung responds to zymosan in a unique manner independent of toll-like receptors, complement, and dectin-1. Am J Respir Cell Mol Biol. 2008;38:227–38.

    Article  PubMed  CAS  Google Scholar 

  44. Yoshitomi H, Sakagushi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med. 2005;201:949–60.

    Article  PubMed  CAS  Google Scholar 

  45. Karumuthil-Melethil S, Perez N, Li R, Vasu C. Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J Immunol. 2008;181:8323–34.

    PubMed  CAS  Google Scholar 

  46. Joosten LA, Heinhuis B, Abdollahi-Roodsaz S, Ferwerda G, Lebourhis L, Philpott DJ, et al. Differential function of the NACHT-LRR (NLR) members Nod1 and Nod2 in arthritis. Proc Natl Acad Sci USA. 2008;105:9017–22.

    Article  PubMed  CAS  Google Scholar 

  47. Oosting M, Berende A, Sturm P, Ter Hofstede HJ, de Jong DJ, Kanneganti TD, et al. Recognition of Borrelia burgdorferi by NOD2 is central for the induction of an inflammatory reaction. J Infect Dis. 2010;201:1849–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Shizuo Akira (Osaka University, Japan) for the provision of the MyD88 KO mice, and our collaborators, Drs. Steve Planck and Tammy Martin, for their critical discussions. This work was supported by the US Department of Veterans Affairs Merit Review grant, National Eye Institute grant EY019020 along with support from the Gerlinger Award, the Stan and Madelle Rosenfeld Family Trust, and the William C. Kuzell Foundation. HLR also receives support from the American College of Rheumatology and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly L. Rosenzweig.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenzweig, H.L., Clowers, J.S., Nunez, G. et al. Dectin-1 and NOD2 mediate cathepsin activation in zymosan-induced arthritis in mice. Inflamm. Res. 60, 705–714 (2011). https://doi.org/10.1007/s00011-011-0324-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0324-7

Keywords

Navigation