Skip to main content

Advertisement

Log in

Novel aspects and new roles for the serine protease plasmin

  • Review
  • Published:
Cellular and Molecular Life Sciences CMLS Aims and scope Submit manuscript

Abstract

The serine protease plasmin is distributed throughout the human body in the form of the zymogen plasminogen. The plasminogen activation system is mostly recognized for its fibrinolytic activity but is also upregulated in chronic inflammatory diseases, including atherosclerosis and arthritis. Plasmin can bind to a variety of cells, including monocytes, through low-affinity binding sites and triggers aggregation of neutrophils, platelet degranulation and arachidonate release from endothelial cells. In monocytes, plasmin elicits full-scale proinflammatory activation, including lipid mediator release, chemotaxis and cytokine expression, as well as induction of other proinflammatory genes. The effects of plasmin are specific, require the active catalytic center and can be antagonized by lysine analogues, implying binding of the plasmin molecule to the cell membrane through its lysine binding sites. In view of the upregulation of the fibrinolytic genes in chronic inflammatory diseases, cell activation by plasmin is likely to play a major pathophysiological role, a view that is further supported by data from transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Simmet.

Additional information

Received 9 September 2003; received after revision 4 October 2003; accepted 13 October 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syrovets, T., Simmet, T. Novel aspects and new roles for the serine protease plasmin. CMLS, Cell. Mol. Life Sci. 61, 873–885 (2004). https://doi.org/10.1007/s00018-003-3348-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-003-3348-5

Navigation