Skip to main content
Log in

Insect hemolymph clotting

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The clot’s appearance in different large-bodied insects has been described, but until recently, little was known about any insect clot’s molecular makeup, and few experiments could directly test its function. Techniques have been developed in Drosophila (fruit fly) larvae to identify clotting factors that can then be tested for effects on hemostasis, healing, and immunity. This has revealed unanticipated complexity in the hemostatic mechanisms in these larvae. While the clot’s molecular structure is not yet fully understood, progress is being made, and the loss of clotting factors has been shown to cause subtle immune defects. The few similarities between coagulation in different insect species and life stages, and the current state of knowledge about coagulation in insects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Theopold U, Li D, Fabbri M, Scherfer C, Schmidt O (2002) The coagulation of insect hemolymph. Cell Mol Life Sci 59:363–372

    Article  PubMed  CAS  Google Scholar 

  2. Grégoire C (1974) Hemolymph coagulation. In: Rockstein M (ed) Physiology of insecta. Academic Press, New York, pp 309–360

    Google Scholar 

  3. Grégoire C (1951) Blood coagulation in arthropods. II. Phase contrast microscopic observations on hemolymph coagulation in sixty-one species of insects. Blood 6:1173–1198

    PubMed  Google Scholar 

  4. Rowley AF, Ratcliffe NA (1976) The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro. Tissue Cell 8:437–446

    Article  PubMed  CAS  Google Scholar 

  5. Ratcliffe NA, Gagen SJ (1977) Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell 9:73–85

    Article  PubMed  CAS  Google Scholar 

  6. Rowley AF, Ratcliffe NA (1978) A histological study of wound healing and hemocyte function in the wax-moth Galleria mellonella. J Morphol 157:181–200

    Article  Google Scholar 

  7. Brehélin M (1979) Mise en évidence de l’induction de la coagulation plasmatique par les hémocytes chez Locusta migratoria. Experientia 35:270–271

    Article  Google Scholar 

  8. Bohn H (1986) Hemolymph clotting in insects. In: Brehelin M (ed) Cells, molecules, and defense reactions. Springer, Berlin, pp 188–207

    Google Scholar 

  9. Meister M, Janning W (1993) Cell lineage of larval and imaginal thoracic anlagen cells of Drosophila melanogaster, as revealed by single-cell transplantations. Development 118:1107–1121

    Google Scholar 

  10. Duvic B, Hoffmann JA, Meister M, Royet J (2002) Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Curr Biol 12:1923–1927

    Article  PubMed  CAS  Google Scholar 

  11. Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  PubMed  CAS  Google Scholar 

  12. Meister M, Lagueux M (2003) Drosophila blood cells. Cell Microbiol 5:573–580

    Article  PubMed  CAS  Google Scholar 

  13. Kurucz E, Zettervall CJ, Sinka R, Vilmos P, Pivarcsi A, Ekengren S, Hegedus Z, Ando I, Hultmark D (2003) Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc Natl Acad Sci USA 100:2622–2627

    Article  PubMed  CAS  Google Scholar 

  14. Meister M (2004) Blood cells of Drosophila: cell lineages and role in host defence. Curr Opin Immunol 16:10–15

    Article  PubMed  CAS  Google Scholar 

  15. Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, Hultmark D (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci USA 101:14192–14197

    Article  PubMed  CAS  Google Scholar 

  16. Vilmos P, Nagy I, Kurucz E, Hultmark D, Gateff E, Ando I (2004) A rapid rosetting method for separation of hemocyte sub-populations of Drosophila melanogaster. Dev Comp Immunol 28:555–563

    Article  PubMed  Google Scholar 

  17. Ribeiro C, Brehelin, M (2006) Insect haemocytes: what type of cell is that? J Insect Physiol 52:417–429

    Article  PubMed  CAS  Google Scholar 

  18. Kurucz E, Vaczi B, Markus R, Laurinyecz B, Vilmos P, Zsamboki J, Csorba K, Gateff E, Hultmark D, Ando I (2007) Definition of Drosophila hemocyte subsets by cell-type specific antigens. Acta Biol Hung 58(Suppl):95–111

    Article  PubMed  Google Scholar 

  19. Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    CAS  Google Scholar 

  20. Li D, Scherfer C, Korayem AM, Zhao Z, Schmidt O, Theopold U (2002) Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochem Mol Biol 32:919–928

    Article  PubMed  CAS  Google Scholar 

  21. Scherfer C, Karlsson C, Loseva O, Bidla G, Goto A, Havemann J, Dushay MS, Theopold U (2004) Isolation and characterization of hemolymph clotting factors in Drosophila melanogaster by a novel pull-out assay. Curr Biol 14:625–629

    Article  PubMed  CAS  Google Scholar 

  22. Bohn H, Barwig B (1984) Hemolymph clotting in the cockroach Leucophaea maderae (Blattaria). Influence of ions and inhibitors; isolation of the plasma coagulogen. J Comp Physiol 154:457–467

    Article  CAS  Google Scholar 

  23. Karlsson C, Korayem AM, Scherfer C, Dushay MS, Theopold U (2004) Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem 279:52033–52041

    Article  PubMed  CAS  Google Scholar 

  24. Lindgren M, Riazi R, Lesch C, Wilhelmsson C, Theopold U, Dushay MS (2008) Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 54:586–592

    Article  PubMed  CAS  Google Scholar 

  25. Kopacek P, Hall M, Söderhäll K (1993) Characterization of a clotting protein, isolated from plasma of the freshwater crayfish Pacifastacus leniusculus. Eur J Biochem 213:591–597

    Article  PubMed  CAS  Google Scholar 

  26. Yeh MS, Huang CJ, Leu JH, Lee YC, Tsai IH (1999) Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp (Penaeus monodon). Eur J Biochem 266:624–633

    Article  PubMed  CAS  Google Scholar 

  27. Osaki T, Okino N, Tokunaga F, Iwanaga S, Kawabata S (2002) Proline-rich cell surface antigens of horseshoe crab hemocytes are substrates for protein cross-linking with a clotting protein coagulin. J Biol Chem 277:40084–40090

    Article  PubMed  CAS  Google Scholar 

  28. Theopold U, Schmidt O, Söderhäll K, Dushay MS (2004) Coagulation in arthropods: defense, wound closure and healing. Trends Immunol 25:289–294

    Article  PubMed  CAS  Google Scholar 

  29. Wang R, Liang Z, Hal M, Soderhall K (2001) A transglutaminase involved in the coagulation system of the freshwater crayfish, Pacifastacus leniusculus. Tissue localisation and cDNA cloning. Fish Shellfish Immunol 11:623–637

    Article  PubMed  CAS  Google Scholar 

  30. Chen MY, Hu KY, Huang CC, Song YL (2005) More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Dev Comp Immunol 29:1003–1016

    Article  PubMed  CAS  Google Scholar 

  31. Yeh MS, Kao LR, Huang CJ, Tsai IH (2006) Biochemical characterization and cloning of transglutaminases responsible for hemolymph clotting in Penaeus monodon and Marsupenaeus japonicus. Biochim Biophys Acta 1764:1167–1178

    PubMed  CAS  Google Scholar 

  32. Bergner A, Muta T, Iwanaga S, Beisel HG, Delotto R, Bode W (1997) Horseshoe crab coagulogen is an invertebrate protein with a nerve growth factor-like domain. Biol Chem 378:283–287

    Article  PubMed  CAS  Google Scholar 

  33. Osaki T, Kawabata S (2004) Structure and function of coagulogen, a clottable protein in horseshoe crabs. Cell Mol Life Sci 61:1257–1265

    Article  PubMed  CAS  Google Scholar 

  34. Hall M, van Heusden MC, Soderhall K (1995) Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem Biophys Res Commun 216:939–946

    Article  PubMed  CAS  Google Scholar 

  35. Hall M, Wang R, Antwerpen Rv, Sottrup-Jensen L, Söderhäll K (1999) The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc Natl Acad Sci USA 96:1965–1970

    Article  PubMed  CAS  Google Scholar 

  36. Komatsu M, Ando S (1998) A very-high-density lipoprotein with clotting ability from hemolymph of sand crayfish, Ibacus ciliatus. Biosci Biotechnol Biochem 62:459–463

    Article  PubMed  CAS  Google Scholar 

  37. Chino H, Hirayama Y, Kyomoto Y, Downer RGH, Takahashi K (1987) Spontaneous aggregation of locust liphophorin during hemolymph collection. Insect Biochem 17:89–97

    Article  CAS  Google Scholar 

  38. Brehélin M (1972) Étude de mécanisme de la coagulation de l’hémolymphe d’un Acridien: Locusta migratoria migratoriodides (R and F). Acrida 1:167–175

    Google Scholar 

  39. Brehélin M (1979) Hemolymph coagulation in Locusta migratoria: evidence for a functional equivalent of fibrinogen. Comp Biochem Physiol B 62B:329–334

    Article  Google Scholar 

  40. Gellissen G (1983) Lipophorin as the plasma coagulen in Locusta migratoria. Naturwissenschaften 70:45–46

    Article  CAS  Google Scholar 

  41. Duvic B, Brehélin M (1998) Two major proteins from locust plasma are involved in coagulation and are specifically precipitated by laminarin, a beta-1, 3-glucan. Insect Biochem Mol Biol 28:959–967

    Article  PubMed  CAS  Google Scholar 

  42. Altincicek B, Stotzel S, Wygrecka M, Preissner KT, Vilcinskas A (2008) Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol 181:2705–2712

    PubMed  CAS  Google Scholar 

  43. Barwig B (1985) Isolation and characterization of plasma coagulen (PC) of the cockroach Leucophaea madera (Blatteria). J Comp Physiol B 155:135–143

    Article  CAS  Google Scholar 

  44. Lee KM, Lee KY, Choi HW, Cho MY, Kwon TH, Kawabata S, Lee BL (2000) Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine. Eur J Biochem 267:3695–3703

    Article  PubMed  CAS  Google Scholar 

  45. Agianian B, Lesch C, Loseva O, Dushay MS (2007) Preliminary characterization of hemolymph coagulation in Anopheles gambiae larvae. Dev Comp Immunol 31:879–888

    Article  PubMed  CAS  Google Scholar 

  46. Bidla G, Lindgren MPM, Theopold U, Dushay MS (2005) Hemolymph coagulation in insect larvae and the role of phenoloxidase in Drosophila. Dev Comp Immunol 29:669–679

    Article  PubMed  CAS  Google Scholar 

  47. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosphila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98:12590–12595

    Article  PubMed  Google Scholar 

  48. Scherfer C, Qazi MR, Takahashi K, Ueda R, Dushay MS, Theopold U, Lemaitre B (2006) The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation. Dev Biol 295:156–163

    Article  PubMed  CAS  Google Scholar 

  49. Korayem A, Fabbri M, Takahashi K, Scherfer C, Lindgren M, Schmidt O, Ueda R, Dushay MS, Theopold U (2004) A glue-like Drosophila salivary protein is expressed in hemocytes: evidence for a function in hemolymph coagulation. Insect Biochem Mol Biol 34:1297–1304

    Article  PubMed  CAS  Google Scholar 

  50. Goto A, Kadowaki T, Kitagawa Y (2003) Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects. Dev Biol 264:582–591

    Article  PubMed  CAS  Google Scholar 

  51. Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U (2007) A role for hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol 31:1255–1263

    Article  PubMed  CAS  Google Scholar 

  52. Kotani E, Yamakawa M, Iwamoto S, Tashiro M, Mori H, Sumida M, Matsubara F, Taniai K, Kadono-Okuda K, Kato Y, Mori H (1995) Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim Biophys Acta 1260:245–258

    PubMed  Google Scholar 

  53. Patthy L (1999) Genome evolution and the evolution of exon-shuffling—a review. Gene 238:103–114

    Article  PubMed  CAS  Google Scholar 

  54. Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  PubMed  CAS  Google Scholar 

  55. Ligoxygakis P, Pelte N, Jiang C, Leclerc V, Duvic B, Belvin M, Jiang H, Hoffmann JA, Reichhart J-M (2002) A serpin mutant links Toll activation to melanization in the host defense of Drosophila. EMBO J 21:6330–6337

    Article  PubMed  CAS  Google Scholar 

  56. De Gregorio E, Han S-J, Lee W-J, Baek M-J, Osaki T, Kawabata S-I, Lee B-L, Iwanaga S, Lemaitre B, Brey PT (2002) An Immune-responsive serpin regulates the melanization cascade in Drosophila. Dev Cell 3:581–592

    Article  PubMed  Google Scholar 

  57. Irving P, Troxler L, Heuer TS, Belvin MP, Kopczynski C, Reichhart J-M, Hoffmann JA, Hetru C (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci USA 98:15119–15124

    Article  PubMed  CAS  Google Scholar 

  58. Leclerc V, Pelte N, Chamy LE, Martinelli C, Ligoxygakis P, Hoffmann JA, Reichhart JM (2006) Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep 7:231–235

    Article  PubMed  CAS  Google Scholar 

  59. Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S (2004) Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J 23:4690–4700

    Article  PubMed  CAS  Google Scholar 

  60. Royet J, Reichhart JM, Hoffmann JA (2005) Sensing and signaling during infection in Drosophila. Curr Opin Immunol 17:11–17

    Article  PubMed  CAS  Google Scholar 

  61. Scherfer C, Tang H, Kambris Z, Lhocine N, Hashimoto C, Lemaitre B (2008) Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult pigmentation. Dev Biol 323:189–196

    Article  PubMed  CAS  Google Scholar 

  62. Rizki TM, Rizki RM, Bellotti RA (1985) Genetics of a Drosophila phenoloxidase. Mol Gen Genet 201:7–13

    Article  PubMed  CAS  Google Scholar 

  63. Bidla G, Dushay MS, Theopold U (2007) Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J Cell Sci 120:1209–1215

    Article  PubMed  CAS  Google Scholar 

  64. Wood W, Faria C, Jacinto A (2006) Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 173:405–416

    Article  PubMed  CAS  Google Scholar 

  65. Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4:907–912

    Article  PubMed  CAS  Google Scholar 

  66. Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034

    Article  PubMed  CAS  Google Scholar 

  67. Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, Martin P (2005) Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 168:567–573

    Article  PubMed  CAS  Google Scholar 

  68. Lai-Fook J (1966) The repair of wounds in the integument of insects. J Insect Physiol 12:195–226

    Article  Google Scholar 

  69. Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2:E239

    Article  PubMed  CAS  Google Scholar 

  70. Muta T, Iwanaga S (1996) The role of hemolymph coagulation in innate immunity. Curr Opin Immunol 8:41–47

    Article  PubMed  CAS  Google Scholar 

  71. Armstrong PB, Armstrong MT (2003) The decorated clot: binding of agents of the innate immune system to the fibrils of the Limulus blood clot. Biol Bull 205:201–203

    Article  PubMed  Google Scholar 

  72. Isakova V, Armstrong PB (2003) Imprisonment in a death-row cell: the fates of microbes entrapped in the Limulus blood clot. Biol Bull 205:203–204

    Article  PubMed  Google Scholar 

  73. Gagen SJ, Ratcliffe NA (1976) Studies on the in vivo cellular reactions and fate of injected bacteria in Galleria mellonella and Pieris brassicae larvae. J Invertebr Pathol 28:17–24

    Article  Google Scholar 

  74. Haine ER, Rolff J, Siva-Jothy MT (2007) Functional consequences of blood clotting in insects. Dev Comp Immunol 31:456–464

    Article  PubMed  CAS  Google Scholar 

  75. Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271

    Article  PubMed  CAS  Google Scholar 

  76. Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6:e305

    Article  CAS  Google Scholar 

  77. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  PubMed  CAS  Google Scholar 

  78. Wartha F, Beiter K, Normark S, Henriques-Normark B (2007) Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 10:52–56

    Article  PubMed  CAS  Google Scholar 

  79. von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111:3070–3080

    Article  CAS  Google Scholar 

  80. Wigglesworth VB (1984) Insect physiology. Chapman and Hall, New York

    Google Scholar 

  81. Borror DJ, De Long DM, Triplehorn CA (1981) An introduction to the study of insects. Saunders College Publishing, Philadelphia

    Google Scholar 

  82. Ashida M, Ishizaki Y, Iwahana H (1983) Activation of pro-phenoloxidase by bacterial cell walls or beta-1, 3-glucans in plasma of the silkworm, Bombyx mori. Biochem Biophys Res Commun 113:562–568

    Article  PubMed  CAS  Google Scholar 

  83. Rämet M, Lanot R, Zachary D, Manfruelli P (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to anonymous reviewers for valuable comments. My work was supported by grants from the Swedish Research Council, the Swedish Animal Welfare Agency, the faculty of Uppsala University, and the Illinois Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell S. Dushay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dushay, M.S. Insect hemolymph clotting. Cell. Mol. Life Sci. 66, 2643–2650 (2009). https://doi.org/10.1007/s00018-009-0036-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0036-0

Keywords

Navigation