Skip to main content
Log in

PIAS proteins: pleiotropic interactors associated with SUMO

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The interactions and functions of protein inhibitors of activated STAT (PIAS) proteins are not restricted to the signal transducers and activators of transcription (STATs), but PIAS1, -2, -3 and -4 interact with and regulate a variety of distinct proteins, especially transcription factors. Although the majority of PIAS-interacting proteins are prone to modification by small ubiquitin-related modifier (SUMO) proteins and the PIAS proteins have the capacity to promote the modification as RING-type SUMO ligases, they do not function solely as SUMO E3 ligases. Instead, their effects are often independent of their Siz/PIAS (SP)-RING finger, but dependent on their capability to noncovalently interact with SUMOs or DNA through their SUMO-interacting motif and scaffold attachment factor-A/B, acinus and PIAS domain, respectively. Here, we present an overview of the cellular regulation by PIAS proteins and propose that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805

    Article  PubMed  CAS  Google Scholar 

  2. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 95:10626–10631

    Article  PubMed  CAS  Google Scholar 

  3. Schmidt D, Muller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561–2574

    Article  PubMed  CAS  Google Scholar 

  4. Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15:1334–1348

    Article  PubMed  CAS  Google Scholar 

  5. Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744

    Article  PubMed  CAS  Google Scholar 

  6. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  7. Beliakoff J, Sun Z (2006) Zimp7 and Zimp10, two novel PIAS-like proteins, function as androgen receptor coregulators. Nucl Recept Signal 4:e017

    PubMed  Google Scholar 

  8. Rodriguez-Magadan H, Merino E, Schnabel D, Ramirez L, Lomeli H (2008) Spatial and temporal expression of Zimp7 and Zimp10 PIAS-like proteins in the developing mouse embryo. Gene Expr Patterns 8:206–213

    Article  PubMed  CAS  Google Scholar 

  9. Potts PR, Yu H (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14:581–590

    Article  PubMed  CAS  Google Scholar 

  10. Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593–605

    Article  PubMed  CAS  Google Scholar 

  11. Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 16:196–202

    Article  PubMed  CAS  Google Scholar 

  12. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  PubMed  CAS  Google Scholar 

  13. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  PubMed  CAS  Google Scholar 

  14. Hay RT (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol 17:370–376

    Article  PubMed  CAS  Google Scholar 

  15. Kim JH, Baek SH (2009) Emerging roles of desumoylating enzymes. Biochim Biophys Acta 1792:155–162

    PubMed  CAS  Google Scholar 

  16. Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3:RESEARCH0002

    PubMed  Google Scholar 

  17. Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev 18:2380–2391

    Article  PubMed  CAS  Google Scholar 

  18. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    Article  PubMed  CAS  Google Scholar 

  19. Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–779

    Article  PubMed  CAS  Google Scholar 

  20. Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol 28:5381–5390

    Article  PubMed  CAS  Google Scholar 

  21. Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR (2005) Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 25:5171–5182

    Article  PubMed  CAS  Google Scholar 

  22. Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7:323–334

    Article  PubMed  CAS  Google Scholar 

  23. Dennis AP, O’Malley BW (2005) Rush hour at the promoter: how the ubiquitin–proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J Steroid Biochem Mol Biol 93:139–151

    Article  PubMed  CAS  Google Scholar 

  24. Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol. Cell 29:653–663

    Article  PubMed  CAS  Google Scholar 

  25. Vertegaal AC (2007) Small ubiquitin-related modifiers in chains. Biochem Soc Trans 35:1422–1423

    Article  PubMed  CAS  Google Scholar 

  26. Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5:2298–2310

    Article  PubMed  CAS  Google Scholar 

  27. Perry JJ, Tainer JA, Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33:201–208

    Article  PubMed  CAS  Google Scholar 

  28. Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26:4089–4101

    Article  PubMed  CAS  Google Scholar 

  29. Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26:4102–4112

    Article  PubMed  CAS  Google Scholar 

  30. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546

    Article  PubMed  CAS  Google Scholar 

  31. Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal AC (2008) The ubiquitin–proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics 7:2107–2122

    Article  PubMed  CAS  Google Scholar 

  32. Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107:5–8

    Article  PubMed  CAS  Google Scholar 

  33. Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275:36316–36323

    Article  PubMed  CAS  Google Scholar 

  34. Duval D, Duval G, Kedinger C, Poch O, Boeuf H (2003) The ‘PINIT’ motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 554:111–118

    Article  PubMed  CAS  Google Scholar 

  35. Tan JA, Hall SH, Hamil KG, Grossman G, Petrusz P, French FS (2002) Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem 277:16993–17001

    Article  PubMed  CAS  Google Scholar 

  36. Wong KA, Kim R, Christofk H, Gao J, Lawson G, Wu H (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol Cell Biol 24:5577–5586

    Article  PubMed  CAS  Google Scholar 

  37. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103

    Article  PubMed  CAS  Google Scholar 

  38. Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Janne OA, Palvimo JJ (1999) A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274:3700–3704

    Article  PubMed  CAS  Google Scholar 

  39. Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R (1997) Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 65:3–17

    Article  PubMed  CAS  Google Scholar 

  40. Aravind L, Koonin EV (2000) SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25:112–114

    Article  PubMed  CAS  Google Scholar 

  41. Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R, Przybylski M, Fackelmayer FO (2000) SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol 20:7480–7489

    Article  PubMed  CAS  Google Scholar 

  42. Okubo S, Hara F, Tsuchida Y, Shimotakahara S, Suzuki S, Hatanaka H, Yokoyama S, Tanaka H, Yasuda H, Shindo H (2004) NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J Biol Chem 279:31455–31461

    Article  PubMed  CAS  Google Scholar 

  43. Liu B, Gross M, ten Hoeve J, Shuai K (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci USA 98:3203–3207

    Article  PubMed  CAS  Google Scholar 

  44. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  PubMed  CAS  Google Scholar 

  45. Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101:14373–14378

    Article  PubMed  CAS  Google Scholar 

  46. Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129

    Article  PubMed  CAS  Google Scholar 

  47. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110

    Article  PubMed  CAS  Google Scholar 

  48. Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127

    Article  PubMed  CAS  Google Scholar 

  49. Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8:550–555

    Article  PubMed  CAS  Google Scholar 

  50. Hakli M, Karvonen U, Janne OA, Palvimo JJ (2005) SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Exp Cell Res 304:224–233

    Article  PubMed  CAS  Google Scholar 

  51. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  PubMed  CAS  Google Scholar 

  52. Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032

    Article  PubMed  CAS  Google Scholar 

  53. Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081

    Article  PubMed  CAS  Google Scholar 

  54. Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22:5222–5234

    Article  PubMed  CAS  Google Scholar 

  55. Kahyo T, Nishida T, Yasuda H (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8:713–718

    Article  PubMed  CAS  Google Scholar 

  56. Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275:223–231

    Article  PubMed  CAS  Google Scholar 

  57. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    Article  PubMed  CAS  Google Scholar 

  58. Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F (2004) The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat Struct Mol Biol 11:984–991

    Article  PubMed  CAS  Google Scholar 

  59. Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    Article  PubMed  CAS  Google Scholar 

  60. Weger S, Hammer E, Heilbronn R (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579:5007–5012

    Article  PubMed  CAS  Google Scholar 

  61. Pungaliya P, Kulkarni D, Park HJ, Marshall H, Zheng H, Lackland H, Saleem A, Rubin EH (2007) TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J Proteome Res 6:3918–3923

    Article  PubMed  CAS  Google Scholar 

  62. Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25:8456–8464

    Article  PubMed  CAS  Google Scholar 

  63. Gregoire S, Yang XJ (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25:2273–2287

    Article  PubMed  CAS  Google Scholar 

  64. Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25:57–70

    Article  PubMed  CAS  Google Scholar 

  65. Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, Dejean A, Leprince D (2007) An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 27:2661–2675

    Article  PubMed  CAS  Google Scholar 

  66. Takahashi Y, Kahyo T, Toh-E A, Yasuda H, Kikuchi Y (2001) Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 276:48973–48977

    Article  PubMed  CAS  Google Scholar 

  67. Deng Z, Wan M, Sui G (2007) PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 27:3780–3792

    Article  PubMed  CAS  Google Scholar 

  68. Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692

    Article  PubMed  CAS  Google Scholar 

  69. Tang Z, Hecker CM, Scheschonka A, Betz H (2008) Protein interactions in the sumoylation cascade: lessons from X-ray structures. FEBS J 275:3003–3015

    Article  PubMed  CAS  Google Scholar 

  70. Takahashi Y, Kikuchi Y (2005) Yeast PIAS-type Ull1/Siz1 is composed of SUMO ligase and regulatory domains. J Biol Chem 280:35822–35828

    Article  PubMed  CAS  Google Scholar 

  71. Reindle A, Belichenko I, Bylebyl GR, Chen XL, Gandhi N, Johnson ES (2006) Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J Cell Sci 119:4749–4757

    Article  PubMed  CAS  Google Scholar 

  72. Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31:371–382

    Article  PubMed  CAS  Google Scholar 

  73. Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24:341–354

    Article  PubMed  CAS  Google Scholar 

  74. Karvonen U, Jaaskelainen T, Rytinki M, Kaikkonen S, Palvimo JJ (2008) ZNF451 is a novel PML body- and SUMO-associated transcriptional coregulator. J Mol Biol 382:585–600

    Article  PubMed  CAS  Google Scholar 

  75. Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, Sadofsky MJ, Zhou MM, Rauscher FJ III (2007) PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28:823–837

    Article  PubMed  CAS  Google Scholar 

  76. Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plotnikova O, Rauscher FJ 3rd, Zhou MM (2008) Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat Struct Mol Biol 15:626–633

    Article  PubMed  CAS  Google Scholar 

  77. Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 103:45–50

    Article  PubMed  CAS  Google Scholar 

  78. Yang SH, Galanis A, Witty J, Sharrocks AD (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 25:5083–5093

    Article  PubMed  CAS  Google Scholar 

  79. Anckar J, Sistonen L (2007) SUMO: getting it on. Biochem Soc Trans 35:1409–1413

    Article  PubMed  CAS  Google Scholar 

  80. Wang J, Zhang H, Iyer D, Feng XH, Schwartz RJ (2008) Regulation of cardiac specific nkx2.5 gene activity by small ubiquitin-like modifier. J Biol Chem 283:23235–23243

    Article  PubMed  CAS  Google Scholar 

  81. Wible BA, Yang Q, Kuryshev YA, Accili EA, Brown AM (1998) Cloning and expression of a novel K+ channel regulatory protein. KChAP J Biol Chem 273:11745–11751

    Article  CAS  Google Scholar 

  82. Martin S, Nishimune A, Mellor JR, Henley JM (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447:321–325

    Article  PubMed  CAS  Google Scholar 

  83. Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A (2006) The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 22:783–794

    Article  PubMed  CAS  Google Scholar 

  84. Onishi A, Peng GH, Hsu C, Alexis U, Chen S, Blackshaw S (2009) Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61:234–246

    Article  PubMed  CAS  Google Scholar 

  85. Munarriz E, Barcaroli D, Stephanou A, Townsend PA, Maisse C, Terrinoni A, Neale MH, Martin SJ, Latchman DS, Knight RA, Melino G, De Laurenzi V (2004) PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Mol Cell Biol 24:10593–10610

    Article  PubMed  CAS  Google Scholar 

  86. Martin N, Schwamborn K, Urlaub H, Gan B, Guan JL, Dejean A (2008) Spatial interplay between PIASy and FIP200 in the regulation of signal transduction and transcriptional activity. Mol Cell Biol 28:2771–2781

    Article  PubMed  CAS  Google Scholar 

  87. Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97:14145–14150

    Article  PubMed  CAS  Google Scholar 

  88. Tian S, Poukka H, Palvimo JJ, Janne OA (2002) Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J 367:907–911

    Article  PubMed  CAS  Google Scholar 

  89. Sentis S, Le Romancer M, Bianchin C, Rostan MC, Corbo L (2005) Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol Endocrinol 19:2671–2684

    Article  PubMed  CAS  Google Scholar 

  90. Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279:29551–29557

    Article  PubMed  CAS  Google Scholar 

  91. Tallec LP, Kirsh O, Lecomte MC, Viengchareun S, Zennaro MC, Dejean A, Lombes M (2003) Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: implication of small ubiquitin-related modifier 1 modification. Mol Endocrinol 17:2529–2542

    Article  PubMed  CAS  Google Scholar 

  92. Kotaja N, Aittomaki S, Silvennoinen O, Palvimo JJ, Janne OA (2000) ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14:1986–2000

    Article  PubMed  CAS  Google Scholar 

  93. Kotaja N, Vihinen M, Palvimo JJ, Janne OA (2002) Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J Biol Chem 277:17781–17788

    Article  PubMed  CAS  Google Scholar 

  94. Yang SH, Sharrocks AD (2005) PIASx acts as an Elk-1 coactivator by facilitating derepression. EMBO J 24:2161–2171

    Article  PubMed  CAS  Google Scholar 

  95. Liu B, Yang R, Wong KA, Getman C, Stein N, Teitell MA, Cheng G, Wu H, Shuai K (2005) Negative regulation of NF-kappaB signaling by PIAS1. Mol Cell Biol 25:1113–1123

    Article  PubMed  CAS  Google Scholar 

  96. Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129:903–914

    Article  PubMed  CAS  Google Scholar 

  97. Long J, Wang G, Matsuura I, He D, Liu F (2004) Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci USA 101:99–104

    Article  PubMed  CAS  Google Scholar 

  98. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763

    Article  PubMed  CAS  Google Scholar 

  99. Kim J, Sharma S, Li Y, Cobos E, Palvimo JJ, Williams SC (2005) Repression and coactivation of CCAAT/enhancer-binding protein epsilon by sumoylation and protein inhibitor of activated STATx proteins. J Biol Chem 280:12246–12254

    Article  PubMed  CAS  Google Scholar 

  100. Chun TH, Itoh H, Subramanian L, Iniguez-Lluhi JA, Nakao K (2003) Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy. Circ Res 92:1201–1208

    Article  PubMed  CAS  Google Scholar 

  101. Lee H, Quinn JC, Prasanth KV, Swiss VA, Economides KD, Camacho MM, Spector DL, Abate-Shen C (2006) PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 20:784–794

    Article  PubMed  CAS  Google Scholar 

  102. van den Akker E, Ano S, Shih HM, Wang LC, Pironin M, Palvimo JJ, Kotaja N, Kirsh O, Dejean A, Ghysdael J (2005) FLI-1 functionally interacts with PIASxalpha, a member of the PIAS E3 SUMO ligase family. J Biol Chem 280:38035–38046

    Article  PubMed  CAS  Google Scholar 

  103. Zhou S, Si J, Liu T, DeWille JW (2008) PIASy represses CCAAT/enhancer-binding protein delta (C/EBPdelta) transcriptional activity by sequestering C/EBPdelta to the nuclear periphery. J Biol Chem 283:20137–20148

    Article  PubMed  CAS  Google Scholar 

  104. Tolkunova E, Malashicheva A, Parfenov VN, Sustmann C, Grosschedl R, Tomilin A (2007) PIAS proteins as repressors of Oct4 function. J Mol Biol 374:1200–1212

    Article  PubMed  CAS  Google Scholar 

  105. Yang SH, Sharrocks AD (2006) PIASxalpha differentially regulates the amplitudes of transcriptional responses following activation of the ERK and p38 MAPK pathways. Mol Cell 22:477–487

    Article  PubMed  CAS  Google Scholar 

  106. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13

    Article  PubMed  CAS  Google Scholar 

  107. Stehmeier P, Muller S (2009) Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell 33:400–409

    Article  PubMed  CAS  Google Scholar 

  108. Weber S, Maass F, Schuemann M, Krause E, Suske G, Bauer UM (2009) PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev 23:118–132

    Article  PubMed  CAS  Google Scholar 

  109. Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N (2007) A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 26:6665–6676

    Article  PubMed  CAS  Google Scholar 

  110. Albor A, El-Hizawi S, Horn EJ, Laederich M, Frosk P, Wrogemann K, Kulesz-Martin M (2006) The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB. J Biol Chem 281:25850–25866

    Article  PubMed  CAS  Google Scholar 

  111. Chen XL, Reindle A, Johnson ES (2005) Misregulation of 2 microm circle copy number in a SUMO pathway mutant. Mol Cell Biol 25:4311–4320

    Article  PubMed  CAS  Google Scholar 

  112. Chen XL, Silver HR, Xiong L, Belichenko I, Adegite C, Johnson ES (2007) Topoisomerase I-dependent viability loss in Saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177:17–30

    Article  PubMed  CAS  Google Scholar 

  113. Watts FZ, Skilton A, Ho JC, Boyd LK, Trickey MA, Gardner L, Ogi FX, Outwin EA (2007) The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem Soc Trans 35:1379–1384

    Article  PubMed  CAS  Google Scholar 

  114. Xhemalce B, Seeler JS, Thon G, Dejean A, Arcangioli B (2004) Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 23:3844–3853

    Article  PubMed  CAS  Google Scholar 

  115. Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196

    Article  PubMed  CAS  Google Scholar 

  116. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102:4777–4782

    Article  PubMed  CAS  Google Scholar 

  117. Mohr SE, Boswell RE (1999) Zimp encodes a homologue of mouse Miz1 and PIAS3 and is an essential gene in Drosophila melanogaster. Gene 229:109–116

    Article  PubMed  CAS  Google Scholar 

  118. Betz A, Lampen N, Martinek S, Young MW, Darnell JE Jr (2001) A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci USA 98:9563–9568

    Article  PubMed  CAS  Google Scholar 

  119. Roy Chowdhuri S, Crum T, Woollard A, Aslam S, Okkema PG (2006) The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Dev Biol 295:664–677

    Article  PubMed  CAS  Google Scholar 

  120. Holway AH, Kim SH, La Volpe A, Michael WM (2006) Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. J Cell Biol 172:999–1008

    Article  PubMed  CAS  Google Scholar 

  121. Kim SH, Michael WM (2008) Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol Cell 32:757–766

    Article  PubMed  CAS  Google Scholar 

  122. Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

    Article  PubMed  CAS  Google Scholar 

  123. Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495–502

    Article  PubMed  CAS  Google Scholar 

  124. Roth W, Sustmann C, Kieslinger M, Gilmozzi A, Irmer D, Kremmer E, Turck C, Grosschedl R (2004) PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173:6189–6199

    PubMed  CAS  Google Scholar 

  125. Bischof O, Dejean A (2007) SUMO is growing senescent. Cell Cycle 6:677–681

    PubMed  CAS  Google Scholar 

  126. Liu B, Mink S, Wong KA, Stein N, Getman C, Dempsey PW, Wu H, Shuai K (2004) PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5:891–898

    Article  PubMed  CAS  Google Scholar 

  127. Yan W, Santti H, Janne OA, Palvimo JJ, Toppari J (2003) Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat. Gene Expr Patterns 3:301–308

    Article  PubMed  CAS  Google Scholar 

  128. Santti H, Mikkonen L, Anand A, Hirvonen-Santti S, Toppari J, Panhuysen M, Vauti F, Perera M, Corte G, Wurst W, Janne OA, Palvimo JJ (2005) Disruption of the murine PIASx gene results in reduced testis weight. J Mol Endocrinol 34:645–654

    Article  PubMed  CAS  Google Scholar 

  129. Tahk S, Liu B, Chernishof V, Wong KA, Wu H, Shuai K (2007) Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc Natl Acad Sci USA 104:11643–11648

    Article  PubMed  CAS  Google Scholar 

  130. Thompson SJ, Loftus LT, Ashley MD, Meller R (2008) Ubiquitin–proteasome system as a modulator of cell fate. Curr Opin Pharmacol 8:90–95

    Article  PubMed  CAS  Google Scholar 

  131. Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773:694–706

    Article  PubMed  CAS  Google Scholar 

  132. Hernandez-Toro J, Prieto C, De las Rivas J (2007) APID2NET: unified interactome graphic analyzer. Bioinformatics 23:2495–2497

    Article  PubMed  CAS  Google Scholar 

  133. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  134. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular interaction network database. Nucleic Acids Res 31:248–250

    Article  PubMed  CAS  Google Scholar 

  135. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  PubMed  CAS  Google Scholar 

  136. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  PubMed  CAS  Google Scholar 

  137. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772

    Article  PubMed  CAS  Google Scholar 

  138. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B et al (2007) IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565

    Article  PubMed  CAS  Google Scholar 

  139. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:D572–D574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Academy of Finland, the Finnish Cancer Foundation, Kuopio Graduate School of Molecular Medicine and Sigrid Jusélius Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma J. Palvimo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rytinki, M.M., Kaikkonen, S., Pehkonen, P. et al. PIAS proteins: pleiotropic interactors associated with SUMO. Cell. Mol. Life Sci. 66, 3029–3041 (2009). https://doi.org/10.1007/s00018-009-0061-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0061-z

Keywords

Navigation