Skip to main content

Advertisement

Log in

Inositol pyrophosphates: structure, enzymology and function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The stereochemistry of the inositol backbone provides a platform on which to generate a vast array of distinct molecular motifs that are used to convey information both in signal transduction and many other critical areas of cell biology. Diphosphoinositol phosphates, or inositol pyrophosphates, are the most recently characterized members of the inositide family. They represent a new frontier with both novel targets within the cell and novel modes of action. This includes the proposed pyrophosphorylation of a unique subset of proteins. We review recent insights into the structures of these molecules and the properties of the enzymes which regulate their concentration. These enzymes also act independently of their catalytic activity via protein–protein interactions. This unique combination of enzymes and products has an important role in diverse cellular processes including vesicle trafficking, endo- and exocytosis, apoptosis, telomere length regulation, chromatin hyperrecombination, the response to osmotic stress, and elements of nucleolar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berridge MJ (2007) Inositol trisphosphate and calcium oscillations. Biochem Soc Symp 7:1–7

    Google Scholar 

  2. Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9:151–161

    CAS  PubMed  Google Scholar 

  3. Irvine RF (2005) Inositide evolution—towards turtle domination? J Physiol 566:295–300

    CAS  PubMed  Google Scholar 

  4. Seeds AM, Frederick JP, Tsui MM, York JD (2007) Roles for inositol polyphosphate kinases in the regulation of nuclear processes and developmental biology. Adv Enzym Regul 47:10–25

    CAS  Google Scholar 

  5. Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280

    CAS  PubMed  Google Scholar 

  6. Alcázar-Román AR, Wente SR (2008) Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 117:1–13

    PubMed  Google Scholar 

  7. Duronio V (2008) The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 415:333–344

    CAS  PubMed  Google Scholar 

  8. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Google Scholar 

  9. Vicinanza M, D’Angelo G, Di Campli A, De Matteis MA (2008) Phosphoinositides as regulators of membrane trafficking in health and disease. Cell Mol Life Sci 65:2833–2841

    CAS  PubMed  Google Scholar 

  10. Europe-Finner GN, Ludérus ME, Small NV, Van Driel R, Reymond CD, Firtel RA, Newell PC (1988) Mutant ras gene induces elevated levels of inositol tris- and hexakisphosphates in Dictyostelium. J Cell Sci 89:13–20

    CAS  PubMed  Google Scholar 

  11. Europe-Finner GN, Gammon B, Newell PC (1991) Accumulation of [3H]-inositol into inositol polyphosphates during development of Dictyostelium. Biochem Biophys Res Commun 181:191–196

    CAS  PubMed  Google Scholar 

  12. Oliver KG, Putney JW Jr, Obie JF, Shears SB (1992) The interconversion of inositol 1, 3, 4, 5, 6-pentakisphosphate and inositol tetrakisphosphates in AR4–2J cells. J Biol Chem 267:21528–21534

    CAS  PubMed  Google Scholar 

  13. Wong NS, Barker CJ, Morris AJ, Craxton A, Kirk CJ, Michell RH (1992) The inositol phosphates in WRK1 rat mammary tumour cells. Biochem J 286:459–468

    CAS  PubMed  Google Scholar 

  14. Mayr GW, Radenberg T, Thiel U, Vogel G, Stephens LR (1992) Phosphoinositol diphosphates: non-enzymic formation in vitro and occurrence in vivo in the cellular slime mold Dictyostelium. Carbohydr Res 234:247–262

    CAS  Google Scholar 

  15. Stephens L, Radenberg T, Thiel U, Vogel G, Khoo KH, Dell A, Jackson TR, Hawkins PT, Mayr GW (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem 268:4009–4015

    CAS  PubMed  Google Scholar 

  16. Menniti FS, Miller RN, Putney JW, Shears SB (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268:3850–3856

    CAS  PubMed  Google Scholar 

  17. Voglmaier SM, Bembenek ME, Kaplin AI, Dormán G, Olszewski JD, Prestwich GD, Snyder SH (1996) Purified inositol hexakisphosphate kinase is an atp synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci USA 93:4305–4310

    CAS  PubMed  Google Scholar 

  18. Nomenclature Committee of the International Union of Biochemistry (1988) Numbering of atoms in myo-inositol recommendations. 1988: nomenclature committee of the international union of biochemistry. Biochem J 258:1–2

    Google Scholar 

  19. Agranoff BW (1978) Cyclitol confusion. Trends Biochem Sci 3:N283–N285

    CAS  Google Scholar 

  20. Albert C, Safrany ST, Bembenek ME, Reddy KM, Reddy K, Falck J, Bröcker M, Shears SB, Mayr GW (1997) Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem J 327:553–560

    CAS  PubMed  Google Scholar 

  21. Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316:106–109

    CAS  PubMed  Google Scholar 

  22. Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW (2008) Structural analysis and detection of biological inositol pyrophosphates reveals that the vip/ppip5k family are 1/3-kinases. J Biol Chem 284:1863–1872

    PubMed  Google Scholar 

  23. Draskovic P, Saiardi A, Bhandari R, Burton A, Ilc G, Kovacevic M, Snyder SH, Podobnik M (2008) Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups. Chem Biol 15:274–286

    CAS  PubMed  Google Scholar 

  24. Dubois E, Scherens B, Vierendeels F, Ho MMW, Messenguy F, Shears SB (2002) In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J Biol Chem 277:23755–23763

    CAS  PubMed  Google Scholar 

  25. Seeds AM, Bastidas RJ, York JD (2005) Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1, 4, 5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae. J Biol Chem 280:27654–27661

    CAS  PubMed  Google Scholar 

  26. Laussmann T, Reddy KM, Reddy KK, Falck JR, Vogel G (1997) Diphospho-myo-inositol phosphates from Dictyostelium identified as d-6-diphospho-myo-inositol pentakis-phosphate and d-5, 6-bisdiphospho-myo-inositol tetrakisphosphate. Biochem J 322:31–33

    CAS  PubMed  Google Scholar 

  27. Laussmann T, Hansen A, Reddy KM, Reddy KK, Falck JR, Vogel G (1998) Diphospho-myo-inositol phosphates in Dictyostelium and Polysphondylium: identification of a new bisdiphospho-myo-inositol tetrakisphosphate. FEBS Lett 426:145–150

    CAS  PubMed  Google Scholar 

  28. Martin JB, Laussmann T, Bakker-Grunwald T, Vogel G, Klein G (2000) Neo-inositol polyphosphates in the amoeba Entamoeba histolytica. J Biol Chem 275:10134–10140

    CAS  PubMed  Google Scholar 

  29. Norbis F, Boll M, Stange G, Markovich D, Verrey F, Biber J, Murer H (1997) Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J Membr Biol 156:19–24

    CAS  PubMed  Google Scholar 

  30. Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9:1323–1326

    CAS  PubMed  Google Scholar 

  31. Schell MJ, Letcher AJ, Brearley CA, Biber J, Murer H, Irvine RF (1999) PiUS (Pi uptake stimulator) is an inositol hexakisphosphate kinase. FEBS Lett 461:169–172

    CAS  PubMed  Google Scholar 

  32. Saiardi A, Nagata E, Luo HR, Snowman AM, Snyder SH (2001) Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem 276:39179–39185

    CAS  PubMed  Google Scholar 

  33. Bennett M, Onnebo SM, Azevedo C, Saiardi A (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol Life Sci 63:552–564

    CAS  PubMed  Google Scholar 

  34. Shears SB (2007) Understanding the biological significance of diphosphoinositol polyphosphates (‘inositol pyrophosphates’). Biochem Soc Symp 7:211–221

    Google Scholar 

  35. Saiardi A, Nagata E, Luo HR, Sawa A, Luo X, Snowman AM, Snyder SH (2001) Mammalian inositol polyphosphate multikinase synthesizes inositol 1, 4, 5-trisphosphate and an inositol pyrophosphate. Proc Natl Acad Sci USA 98:2306–2311

    CAS  PubMed  Google Scholar 

  36. Zhang T, Caffrey JJ, Shears SB (2001) The transcriptional regulator, Arg82, is a hybrid kinase with both monophosphoinositol- and diphosphoinositol-polyphosphate synthase activity. FEBS Lett 494:208–212

    CAS  PubMed  Google Scholar 

  37. Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci USA 102:1911–1914

    CAS  PubMed  Google Scholar 

  38. York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280:4264–4269

    CAS  PubMed  Google Scholar 

  39. Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang S-N, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren P-O (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 318:1299–1302

    CAS  PubMed  Google Scholar 

  40. Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y, Carninci P (2004) Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas. Nat Methods 1:233–239

    PubMed  Google Scholar 

  41. Maruyama Y, Wakamatsu A, Kawamura Y, Kimura K, Yamamoto J, Nishikawa T, Kisu Y, Sugano S, Goshima N, Isogai T, Nomura N (2009) Human gene and protein database (HGPD): a novel database presenting a large quantity of experiment-based results in human proteomics. Nucl Acids Res. 37(Database issue):D762–D766

    Google Scholar 

  42. Scamuffa N, Calvo F, Chrétien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963

    CAS  PubMed  Google Scholar 

  43. Tomita T (2001) Immunocytochemical localization of prohormone convertase 1/3 and 2 in pancreatic islet cells and islet cell tumors. Pancreas 23:172–176

    CAS  PubMed  Google Scholar 

  44. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105:10762–10767

    CAS  PubMed  Google Scholar 

  45. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP (2002) Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 277:2381–2384

    CAS  PubMed  Google Scholar 

  46. Barker CJ, Wright J, Hughes PJ, Kirk CJ, Michell RH (2004) Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. Biochem J 380:465–473

    CAS  PubMed  Google Scholar 

  47. Bhandari R, Saiardi A, Ahmadibeni Y, Snowman AM, Resnick AC, Kristiansen TZ, Molina H, Pandey A, Werner JK, Juluri KR, Xu Y, Prestwich GD, Parang K, Snyder SH (2007) Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci USA 104:15305–15310

    CAS  PubMed  Google Scholar 

  48. Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) The inositol hexakisphosphate kinase family: catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 275:24686–24692

    CAS  PubMed  Google Scholar 

  49. Larsson O, Barker CJ, Sjöholm A, Carlqvist H, Michell RH, Bertorello A, Nilsson T, Honkanen RE, Mayr GW, Zwiller J, Berggren PO (1997) Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science 278:471–474

    CAS  PubMed  Google Scholar 

  50. Michell RH, King CE, Piper CJ, Stephens LR, Bunce CM, Guy GR, Brown G (1988) Inositol lipids and phosphates in erythrocytes and HL60 cells. Soc Gen Physiol Ser 43:345–355

    CAS  PubMed  Google Scholar 

  51. Luo HR, Saiardi A, Nagata E, Ye K, Yu H, Jung TS, Luo X, Jain S, Sawa A, Snyder SH (2001) Grab: a physiologic guanine nucleotide exchange factor for rab3a, which interacts with inositol hexakisphosphate kinase. Neuron 31:439–451

    CAS  PubMed  Google Scholar 

  52. Tickenbrock L, Cramer J, Vetter IR, Muller O (2002) The coiled coil region (amino acids 129–250) of the tumor suppressor protein adenomatous polyposis coli (APC): its structure and its interaction with chromosome maintenance region 1 (Crm-1). J Biol Chem 277:32332–32338

    CAS  PubMed  Google Scholar 

  53. Vanacova S, Stefl R (2007) The exosome and RNA quality control in the nucleus. EMBO Rep 8:651–657

    CAS  PubMed  Google Scholar 

  54. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    CAS  PubMed  Google Scholar 

  55. Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105

    CAS  PubMed  Google Scholar 

  56. Lexicon knockout mouse NIH-0750, mouse genome database (MGD), mouse genome informatics Web Site, http://www.informatics.jax.org/external/ko/lexicon/1223.html (18 July 2006)

  57. Bhandari R, Juluri KR, Resnick AC, Snyder SH (2008) Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci USA 105:2349–2353

    CAS  PubMed  Google Scholar 

  58. Azevedo C, Burton A, Bennett M, Onnebo SMN, Saiardi A (2010) Synthesis of InsP7 by the inositol hexakisphosphate kinase 1 (IP6K1) In: Barker CJ (ed) Methods in molecular biology. Preliminary entry 2203, 2010, ISBN 978-1-60327-174-5, Hardcover, Due: July 2010 (in press)

  59. Morrison BH, Tang Z, Jacobs BS, Bauer JA, Lindner DJ (2005) Apo2L/TRAIL induction and nuclear translocation of inositol hexakisphosphate kinase 2 during IFN-beta-induced apoptosis in ovarian carcinoma. Biochem J 385:595–603

    CAS  PubMed  Google Scholar 

  60. Nagata E, Luo HR, Saiardi A, Bae BI, Suzuki N, Snyder SH (2005) Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem 280:1634–1640

    CAS  PubMed  Google Scholar 

  61. Morrison BH, Bauer JA, Lupica JA, Tang Z, Schmidt H, DiDonato JA, Lindner DJ (2007) Effect of inositol hexakisphosphate kinase 2 on transforming growth factor beta-activated kinase 1 and NF-kappaB activation. J Biol Chem 282:15349–15356

    CAS  PubMed  Google Scholar 

  62. Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM, van Rossum DB, Patterson RL, Snyder SH (2008) Hsp90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc Natl Acad Sci USA 105:1134–1139

    CAS  PubMed  Google Scholar 

  63. Morrison BH, Haney R, Lamarre E, Drazba J, Prestwich GD, Lindner DJ (2009) Gene deletion of inositol hexakisphosphate kinase 2 predisposes to aerodigestive tract carcinoma. Oncogene 28:2383–2392

    CAS  PubMed  Google Scholar 

  64. Xuhua, X (2007) Bioinformatics and the cell : modern computational approaches in genomics, proteomics and transcriptomics. Springer, New York

  65. Luo HR, Huang YE, Chen JC, Saiardi A, Iijima M, Ye K, Huang Y, Nagata E, Devreotes P, Snyder SH (2003) Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3, 4, 5)P3 interactions. Cell 114:559–572

    CAS  PubMed  Google Scholar 

  66. Huang KN, Symington LS (1995) Suppressors of a Saccharomyces cerevisiae pkc1 mutation identify alleles of the phosphatase gene PTC1 and of a novel gene encoding a putative basic leucine zipper protein. Genetics 141:1275–1285

    CAS  PubMed  Google Scholar 

  67. Uetz P, Glot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emill A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    CAS  PubMed  Google Scholar 

  68. Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16:162–172

    CAS  PubMed  Google Scholar 

  69. York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280:4264–4269

    Google Scholar 

  70. Shears SB, Ali N, Craxton A, Bembenek ME (1995) Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J Biol Chem 270:10489–10497

    CAS  PubMed  Google Scholar 

  71. Huang CF, Voglmaier SM, Bembenek ME, Saiardi A, Snyder SH (1998) Identification and purification of diphosphoinositol pentakisphosphate kinase, which synthesizes the inositol pyrophosphate bis(diphospho)inositol tetrakisphosphate. Biochemistry 37:14998–15004

    CAS  PubMed  Google Scholar 

  72. Fridy PC, Otto JC, Dollins DE, York JD (2007) Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem 282:30754–30762

    CAS  PubMed  Google Scholar 

  73. Choi JH, Williams J, Cho J, Falck JR, Shears SB (2007) Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem 282:30763–30775

    CAS  PubMed  Google Scholar 

  74. Grishin NV (1999) Phosphatidylinositol phosphate kinase: a link between protein kinase and glutathione synthase folds. J Mol Biol 291:239–247

    CAS  PubMed  Google Scholar 

  75. Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB (1997) Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem J 328:75–81

    CAS  PubMed  Google Scholar 

  76. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    CAS  PubMed  Google Scholar 

  77. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JRIII (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7:1346–1351

    CAS  PubMed  Google Scholar 

  78. Safrany ST, Caffrey JJ, Yang X, Bembenek ME, Moyer MB, Burkhart WA, Shears SB (1998) A novel context for the ‘mutt’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J 17:6599–6607

    CAS  PubMed  Google Scholar 

  79. McLennan AG (2000) Dinucleoside polyphosphates-friend or foe? Pharmacol Ther 87:73–89

    CAS  PubMed  Google Scholar 

  80. Bessman MJ, Frick DN, O’Handley SF (1996) The mutt proteins or “nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062

    CAS  PubMed  Google Scholar 

  81. Yang X, Safrany ST, Shears SB (1999) Site-directed mutagenesis of diphosphoinositol polyphosphate phosphohydrolase, a dual specificity nudt enzyme that attacks diadenosine polyphosphates and diphosphoinositol polyphosphates. J Biol Chem 274:35434–35440

    CAS  PubMed  Google Scholar 

  82. Caffrey JJ, Shears SB (2001) Genetic rationale for microheterogeneity of human diphosphoinositol polyphosphate phosphohydrolase type 2. Gene 269:53–60

    CAS  PubMed  Google Scholar 

  83. Leslie NR, McLennan AG, Safrany ST (2002) Cloning and characterisation of haps1 and haps2, human diadenosine polyphosphate-metabolising nudix hydrolases. BMC Biochem 3:20

    PubMed  Google Scholar 

  84. Hidaka K, Caffrey JJ, Hua L, Zhang T, Falck JR, Nickel GC, Carrel L, Barnes LD, Shears SB (2002) An adjacent pair of human nudt genes on chromosome x are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem 277:32730–32738

    CAS  PubMed  Google Scholar 

  85. Hua LV, Hidaka K, Pesesse X, Barnes LD, Shears SB (2003) Paralogous murine nudt10 and nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent diphosphoinositol polyphosphate phosphohydrolases. Biochem J 373:81–89

    CAS  PubMed  Google Scholar 

  86. Chu C, Alapat D, Wen X, Timo K, Burstein D, Lisanti M, Shears S, Kohtz DS (2004) Ectopic expression of murine diphosphoinositol polyphosphate phosphohydrolase 1 attenuates signaling through the erk1/2 pathway. Cell Signal 16:1045–1059

    CAS  PubMed  Google Scholar 

  87. Caffrey JJ, Safrany ST, Yang X, Shears SB (2000) Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases an expanding nudt family. J Biol Chem 275:12730–12736

    CAS  PubMed  Google Scholar 

  88. Hua LV, Green M, Warsh JJ, Li PP (2001) Molecular cloning of a novel isoform of diphosphoinositol polyphosphate phosphohydrolase: a potential target of lithium therapy. Neuropsychopharmacology 24:640–651

    CAS  PubMed  Google Scholar 

  89. Cartwright JL, McLennan AG (1999) The Saccharomyces cerevisiae yor163w gene encodes a diadenosine 5′, 5″‘-p1, p6-hexaphosphate (ap6a) hydrolase member of the mutt motif (nudix hydrolase) family. J Biol Chem 274:8604–8610

    CAS  PubMed  Google Scholar 

  90. Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe aps1, a diadenosine 5′, 5′ “-p1, p6-hexaphosphate hydrolase that is a member of the nudix (mutt) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38:3649–3655

    CAS  PubMed  Google Scholar 

  91. Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB (1999) The diadenosine hexaphosphate hydrolases from schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase: overlapping substrate specificities in a mutt-type protein. J Biol Chem 274:21735–21740

    CAS  PubMed  Google Scholar 

  92. Fisher DI, Safrany ST, Strike P, McLennan AG, Cartwright JL (2002) Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (prpp) pyrophosphatase activity that generates the glycolytic activator ribose 1, 5-bisphosphate. J Biol Chem 277:47313–47317

    CAS  PubMed  Google Scholar 

  93. Fersht A (1998) Structure and mechanism in protein science. Freeman, New York

    Google Scholar 

  94. Ash DE, Schramm VL (1982) Determination of free and bound manganese(ii) in hepatocytes from fed and fasted rats. J Biol Chem 257:9261–9264

    CAS  PubMed  Google Scholar 

  95. Ali N, Craxton A, Shears SB (1993) Hepatic ins(1, 3, 4, 5)p4 3-phosphatase is compartmentalized inside endoplasmic reticulum. J Biol Chem 268:6161–6167

    CAS  PubMed  Google Scholar 

  96. Glennon MC, Shears SB (1993) Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J 293(Pt 2):583–590

    CAS  PubMed  Google Scholar 

  97. Harwood AJ (2005) Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatry 10:117–126

    CAS  PubMed  Google Scholar 

  98. Cartwright JL, Safrany ST, Dixon LK, Darzynkiewicz E, Stepinski J, Burke R, McLennan AG (2002) The g5r (d250) gene of african swine fever virus encodes a nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates. J Virol 76:1415–1421

    CAS  PubMed  Google Scholar 

  99. Ingram SW, Safrany ST, Barnes LD (2003) Disruption and overexpression of the schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5′, 5″‘-p1, p5-pentaphosphate and diphosphoinositol polyphosphate concentrations. Biochem J 369:519–528

    CAS  PubMed  Google Scholar 

  100. Pinna LA (1990) Casein kinase 2: an ‘eminence grise’ in cellular regulation? Biochim Biophys Acta 1054:267–284

    CAS  PubMed  Google Scholar 

  101. Caizergues-Ferrer M, Belenguer P, Lapeyre B, Amalric F, Wallace MO, Olson MO (1987) Phosphorylation of nucleolin by a nucleolar type nii protein kinase. Biochemistry 26:7876–7883

    CAS  PubMed  Google Scholar 

  102. Meier UT (1996) Comparison of the rat nucleolar protein nopp140 with its yeast homolog srp40: differential phosphorylation in vertebrates and yeast. J Biol Chem 271:19376–19384

    CAS  PubMed  Google Scholar 

  103. Meier UT, Blobel G (1992) Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127–138

    CAS  PubMed  Google Scholar 

  104. Jones NC, Farlie PG, Minichiello J, Newgreen DF (1999) Detection of an appropriate kinase activity in branchial arches i and ii that coincides with peak expression of the treacher collins syndrome gene product, treacle. Hum Mol Genet 8:2239–2245

    CAS  PubMed  Google Scholar 

  105. Kim Y-K, Lee KJ, Jeon H, Yu YG (2006) Protein kinase ck2 is inhibited by human nucleolar phosphoprotein p140 in an inositol hexakisphosphate-dependent manner. J Biol Chem 281:36752–36757

    CAS  PubMed  Google Scholar 

  106. Lee W-K, Lee S-Y, Kim W-I, Rho Y-H, Bae Y-S, Lee C, Kim IY, Yu YG (2008) Characterization of the insp6-dependent interaction between ck2 and nopp140. Biochem Biophys Res Commun 376:439–444

    CAS  PubMed  Google Scholar 

  107. Valdez BC, Henning D, So RB, Dixon J, Dixon MJ (2004) The treacher collins syndrome (tcof1) gene product is involved in ribosomal dna gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci USA 101:10709–10714

    CAS  PubMed  Google Scholar 

  108. Ginisty H, Serin G, Ghisolfi-Nieto L, Roger B, Libante V, Amalric F, Bouvet P (2000) Interaction of nucleolin with an evolutionarily conserved pre-ribosomal rna sequence is required for the assembly of the primary processing complex. J Biol Chem 275:18845–18850

    CAS  PubMed  Google Scholar 

  109. Lee WC, Zabetakis D, Mélèse T (1992) Nsr1 is required for pre-rrna processing and for the proper maintenance of steady-state levels of ribosomal subunits. Mol Cell Biol 12:3865–3871

    CAS  PubMed  Google Scholar 

  110. Horigome C, Ikeda R, Okada T, Takenami K, Mizuta K (2009) Genetic interaction between ribosome biogenesis and inositol polyphosphate metabolism in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73:443–446

    CAS  PubMed  Google Scholar 

  111. Yang L, Reece JM, Cho J, Bortner CD, Shears SB (2008) The nucleolus exhibits an osmotically regulated gatekeeping activity that controls the spatial dynamics and functions of nucleolin. J Biol Chem 283:11823–11831

    CAS  PubMed  Google Scholar 

  112. Beck KA, Keen JH (1991) Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein ap-2. J Biol Chem 266:4442–4447

    CAS  PubMed  Google Scholar 

  113. Voglmaier SM, Keen JH, Murphy JE, Ferris CD, Prestwich GD, Snyder SH, Theibert AB (1992) Inositol hexakisphosphate receptor identified as the clathrin assembly protein ap-2. Biochem Biophys Res Commun 187:158–163

    CAS  PubMed  Google Scholar 

  114. Fleischer B, Xie J, Mayrleitner M, Shears SB, Palmer DJ, Fleischer S (1994) Golgi coatomer binds, and forms k(+)-selective channels gated by, inositol polyphosphates. J Biol Chem 269:17826–17832

    CAS  PubMed  Google Scholar 

  115. Ali N, Duden R, Bembenek ME, Shears SB (1995) The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae. Biochem J 310(Pt 1):279–284

    CAS  PubMed  Google Scholar 

  116. Norris FA, Ungewickell E, Majerus PW (1995) Inositol hexakisphosphate binds to clathrin assembly protein 3 (ap-3/ap180) and inhibits clathrin cage assembly in vitro. J Biol Chem 270:214–217

    CAS  PubMed  Google Scholar 

  117. Ye W, Ali N, Bembenek ME, Shears SB, Lafer EM (1995) Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein ap-3. J Biol Chem 270:1564–1568

    CAS  PubMed  Google Scholar 

  118. Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci USA 99:14206–14211

    CAS  PubMed  Google Scholar 

  119. Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH (1996) A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor ap-2 alpha subunit: implications for the endocytic pathway. J Biol Chem 271:20922–20929

    CAS  PubMed  Google Scholar 

  120. Hao W, Tan Z, Prasad K, Reddy KK, Chen J, Prestwich GD, Falck JR, Shears SB, Lafer EM (1997) Regulation of ap-3 function by inositides: identification of phosphatidylinositol 3,4,5-trisphosphate as a potent ligand. J Biol Chem 272:6393–6398

    CAS  PubMed  Google Scholar 

  121. Chaudhary A, Gu QM, Thum O, Profit AA, Qi Y, Jeyakumar L, Fleischer S, Prestwich GD (1998) Specific interaction of golgi coatomer protein alpha-cop with phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:8344–8350

    CAS  PubMed  Google Scholar 

  122. Padmanabhan U, Dollins DE, Fridy PC, York JD, Downes CP (2009) Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J Biol Chem 284:10571–10582

    CAS  PubMed  Google Scholar 

  123. Pesesse X, Choi K, Zhang T, Shears SB (2004) Signaling by higher inositol polyphosphates: synthesis of bisdiphosphoinositol tetrakisphosphate (“InsP8”) is selectively activated by hyperosmotic stress. J Biol Chem 279:43378–43381

    CAS  PubMed  Google Scholar 

  124. Choi K, Mollapour E, Shears SB (2005) Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cell Signal 17:1533–1541

    CAS  PubMed  Google Scholar 

  125. Baxi MD, Vishwanatha JK (1995) Diadenosine polyphosphates: their biological and pharmacological significance. J Pharmacol Toxicol Methods 33:121–128

    CAS  PubMed  Google Scholar 

  126. Di Ciano C, Nie Z, Szászi K, Lewis A, Uruno T, Zhan X, Rotstein OD, Mak A, Kapus A (2002) Osmotic stress-induced remodeling of the cortical cytoskeleton. Am J Physiol Cell Physiol 283:C850–C865

    Google Scholar 

  127. Chiasson JL, Aris-Jilwan N, Bélanger R, Bertrand S, Beauregard H, Ekoé JM, Fournier H, Havrankova J (2003) Diagnosis and treatment of diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Can Med Assoc J 168:859–866

    Google Scholar 

  128. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    CAS  PubMed  Google Scholar 

  129. Morrison BH, Bauer JA, Kalvakolanu DV, Lindner DJ (2001) Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon-beta in ovarian carcinoma cells. J Biol Chem 276:24965–24970

    CAS  PubMed  Google Scholar 

  130. Morrison BH, Bauer JA, Hu J, Grane RW, Ozdemir AM, Chawla-Sarkar M, Gong B, Almasan A, Kalvakolanu DV, Lindner DJ (2002) Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 21:1882–1889

    CAS  PubMed  Google Scholar 

  131. Arch RH, Gedrich RW, Thompson CB (1998) Tumor necrosis factor receptor-associated factors (TRAFs)—a family of adapter proteins that regulates life and death. Genes Dev 12:2821–2830

    CAS  PubMed  Google Scholar 

  132. Barginear MF, Van Poznak C, Rosen N, Modi S, Hudis CA, Budman DR (2008) The heat shock protein 90 chaperone complex: an evolving therapeutic target. Curr Cancer Drug Targets 8:522–532

    CAS  PubMed  Google Scholar 

  133. Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348

    CAS  PubMed  Google Scholar 

  134. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    CAS  PubMed  Google Scholar 

  135. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277:39858–39866

    CAS  PubMed  Google Scholar 

  136. Sahu SK, Gummadi SN, Manoj N, Aradhyam GK (2007) Phospholipid scramblases: an overview. Arch Biochem Biophys 462:103–114

    CAS  PubMed  Google Scholar 

  137. Aoki M, Sobek V, Maslyar DJ, Hecht A, Vogt PK (2002) Oncogenic transformation by beta-catenin: deletion analysis and characterization of selected target genes. Oncogene 21:6983–6991

    CAS  PubMed  Google Scholar 

  138. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  PubMed  Google Scholar 

  139. Shears SB (2005) Telomere maintenance by intracellular signals: new kid on the block? Proc Natl Acad Sci USA 102:1811–1812

    CAS  PubMed  Google Scholar 

  140. Luo HR, Saiardi A, Yu H, Nagata E, Ye K, Snyder SH (2002) Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase c1 mutant yeast. Biochemistry 41:2509–2515

    CAS  PubMed  Google Scholar 

  141. Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999) Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 343:705–712

    CAS  PubMed  Google Scholar 

  142. Lee YS, Mulugu S, York JD, O’Shea EK (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316:109–112

    CAS  PubMed  Google Scholar 

  143. Lee YS, Huang K, Quiocho FA, O’Shea EK (2008) Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol 4:25–32

    CAS  PubMed  Google Scholar 

  144. Onnebo SM, Saiardi A (2007) Inositol pyrophosphates get the vip1 treatment. Cell 129:647–649

    CAS  PubMed  Google Scholar 

  145. Pyerin W, Barz T, Ackermann K (2005) Protein kinase CK2 in gene control at cell cycle entry. Mol Cell Biochem 274:189–200

    CAS  PubMed  Google Scholar 

  146. Dhariwala FA, Rajadhyaksha MS (2008) An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 28:351–369

    CAS  PubMed  Google Scholar 

  147. Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276:34199–341205

    CAS  PubMed  Google Scholar 

  148. Maffucci T, Falasca M (2001) Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. FEBS Lett 506:173–179

    CAS  PubMed  Google Scholar 

  149. Chan TO, Rittenhouse SE, Tsichlis PN (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014

    CAS  PubMed  Google Scholar 

  150. Piccolo E, Vignati S, Maffucci T, Innominato PF, Riley AM, Potter BV, Pandolfi PP, Broggini M, Iacobelli S, Innocenti P, Falasca M (2004) Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene 23:1754–1765

    CAS  PubMed  Google Scholar 

  151. Jackson SG, Zhang Y, Haslam RJ, Junop MS (2007) Structural analysis of the carboxy terminal PH domain of pleckstrin bound to D-myo-inositol 1, 2, 3, 5, 6-pentakisphosphate. BMC Struct Biol 7:80

    PubMed  Google Scholar 

  152. Downes CP, Gray A, Fairservice A, Safrany ST, Batty IH, Fleming I (2005) The regulation of membrane to cytosol partitioning of signalling proteins by phosphoinositides and their soluble headgroups. Biochem Soc Trans 33:1303–1307

    CAS  PubMed  Google Scholar 

  153. Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Downes CP, Safrany ST, Alessi DR, van Aalten DM (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:3918–3928

    CAS  PubMed  Google Scholar 

  154. Takeuchi H, Kanematsu T, Misumi Y, Sakane F, Konishi H, Kikkawa U, Watanabe Y, Katan M, Hirata M (1997) Distinct specificity in the binding of inositol phosphates by pleckstrin homology domains of pleckstrin, RAC-protein kinase, diacylglycerol kinase and a new 130 kDa protein. Biochim Biophys Acta 1359:275–285

    CAS  PubMed  Google Scholar 

  155. Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA (1997) High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 272:8474–8481

    CAS  PubMed  Google Scholar 

  156. Milburn CC, Deak M, Kelly SM, Price NC, Alessi DR, Van Aalten DM (2003) Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem J 375:531–538

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank S.H. Snyder and A. Chakraborty for providing unpublished work and B.M. Hallberg, for structural insights. The 3-D figure was constructed in trueSpace 7.6, Caligari Inc. This work was supported by grants from Karolinska Institutet, Novo Nordisk Foundation, the Swedish Research Council, the Swedish Diabetes Association, EFSD, The Family Erling-Persson Foundation, Berth von Kantzow’s Foundation and EuroDia (LSHM-CT-2006-518153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher John Barker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, C.J., Illies, C., Gaboardi, G.C. et al. Inositol pyrophosphates: structure, enzymology and function. Cell. Mol. Life Sci. 66, 3851–3871 (2009). https://doi.org/10.1007/s00018-009-0115-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0115-2

Keywords

Navigation