Skip to main content
Log in

Nuclear transport and the mitotic apparatus: an evolving relationship

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The trafficking of macromolecules between the cytoplasm and the nucleus is controlled by the nuclear pore complexes (NPCs) and various transport factors that facilitate the movement of cargos through the NPCs and their accumulation in the target compartment. While their functions in transport are well established, an ever-growing number of observations have also linked components of the nuclear transport machinery to processes that control chromosome segregation during mitosis, including spindle assembly, kinetochore function, and the spindle assembly checkpoint. In this review, we will discuss this evolving area of study and emerging hypotheses that propose key roles for components of the nuclear transport apparatus in mitotic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tran EJ, Wente SR (2006) Dynamic nuclear pore complexes: life on the edge. Cell 125:1041–1053

    CAS  PubMed  Google Scholar 

  2. D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18:456–466

    PubMed  Google Scholar 

  3. Antonin W, Ellenberg J, Dultz E (2008) Nuclear pore complex assembly through the cell cycle: regulation and membrane organization. FEBS Lett 582:2004–2016

    CAS  PubMed  Google Scholar 

  4. Chan GK, Liu ST, Yen TJ (2005) Kinetochore structure and function. Trends Cell Biol 15:589–598

    CAS  PubMed  Google Scholar 

  5. Maiato H, DeLuca J, Salmon ED, Earnshaw WC (2004) The dynamic kinetochore-microtubule interface. J Cell Sci 117:5461–5477

    CAS  PubMed  Google Scholar 

  6. Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531

    CAS  PubMed  Google Scholar 

  7. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    CAS  PubMed  Google Scholar 

  8. Ciciarello M, Mangiacasale R, Lavia P (2007) Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64:1891–1914

    CAS  PubMed  Google Scholar 

  9. Kalab P, Heald R (2008) The RanGTP gradient—a GPS for the mitotic spindle. J Cell Sci 121:1577–1586

    CAS  PubMed  Google Scholar 

  10. Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    CAS  PubMed  Google Scholar 

  11. Hardwick KG, Murray AW (1995) Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol 131:709–720

    CAS  PubMed  Google Scholar 

  12. Iouk T, Kerscher O, Scott RJ, Basrai MA, Wozniak RW (2002) The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J Cell Biol 159:807–819

    CAS  PubMed  Google Scholar 

  13. Ikui AE, Furuya K, Yanagida M, Matsumoto T (2002) Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J Cell Sci 115:1603–1610

    CAS  PubMed  Google Scholar 

  14. De Souza CP, Hashmi SB, Nayak T, Oakley B, Osmani SA (2009) Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol Biol Cell 20:2146–2159

    PubMed  Google Scholar 

  15. Scott RJ, Lusk CP, Dilworth DJ, Aitchison JD, Wozniak RW (2005) Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16:4362–4374

    CAS  PubMed  Google Scholar 

  16. Quimby BB, Arnaoutov A, Dasso M (2005) Ran GTPase regulates Mad2 localization to the nuclear pore complex. Eukaryot Cell 4:274–280

    CAS  PubMed  Google Scholar 

  17. Chen RH, Shevchenko A, Mann M, Murray AW (1998) Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol 143:283–295

    CAS  PubMed  Google Scholar 

  18. Chen RH, Waters JC, Salmon ED, Murray AW (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274:242–246

    CAS  PubMed  Google Scholar 

  19. Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE (2005) Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 15:856–861

    CAS  PubMed  Google Scholar 

  20. Campbell M, Chan G, Yen T (2001) Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J Cell Sci 114:953–963

    CAS  PubMed  Google Scholar 

  21. Lee SH, Sterling H, Burlingame A, McCormick F (2008) Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev 22:2926–2931

    CAS  PubMed  Google Scholar 

  22. Katsani KR, Karess RE, Dostatni N, Doye V (2008) In vivo dynamics of Drosophila nuclear envelope components. Mol Biol Cell 19:3652–3666

    CAS  PubMed  Google Scholar 

  23. Lince-Faria M, Maffini S, Orr B, Ding Y, Claudia F, Sunkel CE, Tavares A, Johansen J, Johansen KM, Maiato H (2009) Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J Cell Biol 184:647–657

    CAS  PubMed  Google Scholar 

  24. Hawryluk-Gara LA, Shibuya EK, Wozniak RW (2005) Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol Biol Cell 16:2382–2394

    CAS  PubMed  Google Scholar 

  25. Johansen KM, Johansen J (2007) Cell and molecular biology of the spindle matrix. Int Rev Cytol 263:155–206

    CAS  PubMed  Google Scholar 

  26. Byrd DA, Sweet DJ, Pante N, Konstantinov KN, Guan T, Saphire AC, Mitchell PJ, Cooper CS, Aebi U, Gerace L (1994) Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J Cell Biol 127:1515–1526

    CAS  PubMed  Google Scholar 

  27. Tighe A, Staples O, Taylor S (2008) Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J Cell Biol 181:893–901

    CAS  PubMed  Google Scholar 

  28. De Souza CP, Osmani AH, Hashmi SB, Osmani SA (2004) Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 14:1973–1984

    PubMed  Google Scholar 

  29. Qi H, Rath U, Wang D, Xu YZ, Ding Y, Zhang W, Blacketer MJ, Paddy MR, Girton J, Johansen J, Johansen KM (2004) Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol Biol Cell 15:4854–4865

    CAS  PubMed  Google Scholar 

  30. Gillett ES, Espelin CW, Sorger PK (2004) Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J Cell Biol 164:535–546

    CAS  PubMed  Google Scholar 

  31. Scott RJ, Cairo LV, Van de Vosse DW, Wozniak RW (2009) The nuclear export factor Xpo1p targets Mad1p to kinetochores in yeast. J Cell Biol 184:21–29

    CAS  PubMed  Google Scholar 

  32. Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW (2003) Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115:813–823

    CAS  PubMed  Google Scholar 

  33. Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198

    CAS  PubMed  Google Scholar 

  34. Cole CN, Hammell CM (1998) Nucleocytoplasmic transport: driving and directing transport. Curr Biol 8:R368–R372

    CAS  PubMed  Google Scholar 

  35. Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4:757–766

    CAS  PubMed  Google Scholar 

  36. Delphin C, Guan T, Melchior F, Gerace L (1997) RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 8:2379–2390

    CAS  PubMed  Google Scholar 

  37. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270:14209–14213

    CAS  PubMed  Google Scholar 

  38. Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24:2373–2384

    CAS  PubMed  Google Scholar 

  39. Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83:683–692

    CAS  PubMed  Google Scholar 

  40. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    CAS  PubMed  Google Scholar 

  41. Mahajan R, Delphin C, Guan TL (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    CAS  PubMed  Google Scholar 

  42. Dasso M (2008) Emerging roles of the SUMO pathway in mitosis. Cell Div 3:5

    PubMed  Google Scholar 

  43. Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, Anderson P (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem 273:6503–6507

    CAS  PubMed  Google Scholar 

  44. Palancade B, Doye V (2008) Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol 18:174–183

    CAS  PubMed  Google Scholar 

  45. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    CAS  PubMed  Google Scholar 

  46. Zhang H, Saitoh H, Matunis MJ (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22:6498–6508

    CAS  PubMed  Google Scholar 

  47. Swaminathan S, Kiendl F, Korner R, Lupetti R, Hengst L, Melchior F (2004) RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. J Cell Biol 164:965–971

    CAS  PubMed  Google Scholar 

  48. Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602

    CAS  PubMed  Google Scholar 

  49. Salina D, Enarson P, Rattner JB, Burke B (2003) Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol 162:991–1001

    CAS  PubMed  Google Scholar 

  50. Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 13:4355–4370

    CAS  PubMed  Google Scholar 

  51. Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (2004) The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol 14:611–617

    CAS  PubMed  Google Scholar 

  52. Arnaoutov A, Azuma Y, Ribbeck K, Joseph J, Boyarchuk Y, Karpova T, McNally J, Dasso M (2005) Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol 7:626–632

    CAS  PubMed  Google Scholar 

  53. Zuccolo M, Alves A, Galy V, Bolhy S, Formstecher E, Racine V, Sibarita JB, Fukagawa T, Shiekhattar R, Yen T, Doye V (2007) The human Nup107–160 nuclear pore sub-complex contributes to proper kinetochore functions. EMBO J 26:1853–1864

    CAS  PubMed  Google Scholar 

  54. Arnaoutov A, Dasso M (2005) Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle 4:1161–1165

    CAS  PubMed  Google Scholar 

  55. Dasso M (2006) Ran at kinetochores. Biochem Soc Trans 34:711–715

    CAS  PubMed  Google Scholar 

  56. Lau CK, Delmar VA, Chan RC, Phung Q, Bernis C, Fichtman B, Rasala BA, Forbes DJ (2009) Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell 20:4043–4058

    CAS  PubMed  Google Scholar 

  57. Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158

    CAS  PubMed  Google Scholar 

  58. Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359

    CAS  PubMed  Google Scholar 

  59. Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16:743–754

    CAS  PubMed  Google Scholar 

  60. Ribbeck K, Groen AC, Santarella R, Bohnsack MT, Raemaekers T, Kocher T, Gentzel M, Gorlich D, Wilm M, Carmeliet G, Mitchison TJ, Ellenberg J, Hoenger A, Mattaj IW (2006) NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17:2646–2660

    CAS  PubMed  Google Scholar 

  61. Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173:879–891

    CAS  PubMed  Google Scholar 

  62. Kraemer D, Blobel G (1997) mRNA binding protein mrnp 41 localizes to both nucleus and cytoplasm. Proc Natl Acad Sci USA 94:9119–9124

    CAS  PubMed  Google Scholar 

  63. Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145:237–254

    CAS  PubMed  Google Scholar 

  64. Kraemer D, Dresbach T, Drenckhahn D (2001) Mrnp41 (Rae 1p) associates with microtubules in HeLa cells and in neurons. Eur J Cell Biol 80:733–740

    CAS  PubMed  Google Scholar 

  65. Blower MD, Nachury M, Heald R, Weis K (2005) A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121:223–234

    CAS  PubMed  Google Scholar 

  66. Wong RW, Blobel G, Coutavas E (2006) Rae1 interaction with NuMA is required for bipolar spindle formation. Proc Natl Acad Sci USA 103:19783–19787

    CAS  PubMed  Google Scholar 

  67. Jeganathan KB, Malureanu L, van Deursen JM (2005) The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438:1036–1039

    CAS  PubMed  Google Scholar 

  68. Jeganathan KB, Baker DJ, van Deursen JM (2006) Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle 5:366–370

    CAS  PubMed  Google Scholar 

  69. Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM (2000) Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11:1555–1569

    CAS  PubMed  Google Scholar 

  70. Hagting A, Den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J (2002) Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J Cell Biol 157:1125–1137

    CAS  PubMed  Google Scholar 

  71. Torosantucci L, De Luca M, Guarguaglini G, Lavia P, Degrassi F (2008) Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol Biol Cell 19:1873–1882

    CAS  PubMed  Google Scholar 

  72. Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29:729–741

    CAS  PubMed  Google Scholar 

  73. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell 133:103–115

    CAS  PubMed  Google Scholar 

  74. Shamu CE, Murray AW (1992) Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J Cell Biol 117:921–934

    CAS  PubMed  Google Scholar 

  75. Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812

    CAS  PubMed  Google Scholar 

  76. Klein UR, Haindl M, Nigg EA, Muller S (2009) RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on borealin. Mol Biol Cell 20:410–418

    CAS  PubMed  Google Scholar 

  77. Knauer SK, Bier C, Habtemichael N, Stauber RH (2006) The Survivin-Crm1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep 7:1259–1265

    CAS  PubMed  Google Scholar 

  78. Xia F, Canovas PM, Guadagno TM, Altieri DC (2008) A survivin-ran complex regulates spindle formation in tumor cells. Mol Cell Biol 28:5299–5311

    CAS  PubMed  Google Scholar 

  79. Belgareh N, Rabut G, Bai SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellenberg J, Doye V (2001) An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J Cell Biol 154:1147–1160

    CAS  PubMed  Google Scholar 

  80. Vasu S, Shah S, Orjalo A, Park M, Fischer WH, Forbes DJ (2001) Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export. J Cell Biol 155:339–354

    CAS  PubMed  Google Scholar 

  81. Loiodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J, Sibarita JB, Doye V (2004) The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol Biol Cell 15:3333–3344

    CAS  PubMed  Google Scholar 

  82. Liu HL, De Souza CP, Osmani AH, Osmani SA (2009) The three fungal transmembrane nuclear pore complex proteins of Aspergillus nidulans are dispensable in the presence of an intact An-Nup84-120 complex. Mol Biol Cell 20:616–630

    PubMed  Google Scholar 

  83. Brohawn SG, Partridge JR, Whittle JR, Schwartz TU (2009) The nuclear pore complex has entered the atomic age. Structure 17:1156–1168

    CAS  PubMed  Google Scholar 

  84. Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ (2006) ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci USA 103:17801–17806

    CAS  PubMed  Google Scholar 

  85. Franz C, Walczak R, Yavuz S, Santarella R, Gentzel M, Askjaer P, Galy V, Hetzer M, Mattaj IW, Antonin W (2007) MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep 8:165–172

    CAS  PubMed  Google Scholar 

  86. Gillespie PJ, Khoudoli GA, Stewart G, Swedlow JR, Blow JJ (2007) ELYS/MEL-28 chromatin association coordinates nuclear pore complex assembly and replication licensing. Curr Biol 17:1657–1662

    CAS  PubMed  Google Scholar 

  87. Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han JD, Hao T, Berriz GF, Bertin N, Huang J, Chuang LS, Li N, Mani R, Hyman AA, Sonnichsen B, Echeverri CJ, Roth FP, Vidal M, Piano F (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436:861–865

    CAS  PubMed  Google Scholar 

  88. Galy V, Askjaer P, Franz C, Lopez-Iglesias C, Mattaj IW (2006) MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr Biol 16:1748–1756

    CAS  PubMed  Google Scholar 

  89. Fernandez AG, Piano F (2006) MEL-28 is downstream of the Ran cycle and is required for nuclear-envelope function and chromatin maintenance. Curr Biol 16:1757–1763

    CAS  PubMed  Google Scholar 

  90. Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6:1114–1121

    CAS  PubMed  Google Scholar 

  91. Doye V, Hurt E (1997) From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9:401–411

    CAS  PubMed  Google Scholar 

  92. Bai SW, Rouquette J, Umeda M, Faigle W, Loew D, Sazer S, Doye V (2004) The fission yeast Nup107–120 complex functionally interacts with the small GTPase Ran/Spi1 and is required for mRNA export, nuclear pore distribution, and proper cell division. Mol Cell Biol 24:6379–6392

    CAS  PubMed  Google Scholar 

  93. Resendes KK, Rasala BA, Forbes DJ (2008) Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export. Mol Cell Biol 28:1755–1769

    CAS  PubMed  Google Scholar 

  94. D’Angelo MA, Anderson DJ, Richard E, Hetzer MW (2006) Nuclear pores form de novo from both sides of the nuclear envelope. Science 312:440–443

    PubMed  Google Scholar 

  95. Orjalo AV, Arnaoutov A, Shen Z, Boyarchuk Y, Zeitlin SG, Fontoura B, Briggs S, Dasso M, Forbes DJ (2006) The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell 17:3806–3818

    CAS  PubMed  Google Scholar 

  96. Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM (2008) Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 15:657–667

    CAS  PubMed  Google Scholar 

  97. Kutay U, Hetzer MW (2008) Reorganization of the nuclear envelope during open mitosis. Curr Opin Cell Biol 20:669–677

    CAS  PubMed  Google Scholar 

  98. Walther TC, Alves A, Pickersgill H, Loiodice I, Hetzer M, Galy V, Hulsmann BB, Kocher T, Wilm M, Allen T, Mattaj IW, Doye V (2003) The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113:195–206

    CAS  PubMed  Google Scholar 

  99. Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ (2003) Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell 11:853–864

    CAS  PubMed  Google Scholar 

  100. Rasala BA, Ramos C, Harel A, Forbes DJ (2008) Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol Biol Cell 19:3982–3996

    CAS  PubMed  Google Scholar 

  101. Walther TC, Askjaer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj IW, Hetzer M (2003) RanGTP mediates nuclear pore complex assembly. Nature 424:689–694

    CAS  PubMed  Google Scholar 

  102. Rotem A, Gruber R, Shorer H, Shaulov L, Klein E, Harel A (2009) Importin beta regulates the seeding of chromatin with initiation sites for nuclear pore assembly. Mol Biol Cell 20:4031–4042

    CAS  PubMed  Google Scholar 

  103. Davuluri G, Gong W, Yusuff S, Lorent K, Muthumani M, Dolan AC, Pack M (2008) Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet 4:e1000240

    PubMed  Google Scholar 

  104. Osmani AH, Davies J, Liu HL, Nile A, Osmani SA (2006) Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol Biol Cell 17:4946–4961

    CAS  PubMed  Google Scholar 

  105. Theisen U, Straube A, Steinberg G (2008) Dynamic rearrangement of nucleoporins during fungal “open” mitosis. Mol Biol Cell 19:1230–1240

    CAS  PubMed  Google Scholar 

  106. Feng J, Huang H, Yen TJ (2006) CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma 115:320–329

    CAS  PubMed  Google Scholar 

  107. Platani M, Santarella-Mellwig R, Posch M, Walczak R, Swedlow JR, Mattaj IW (2009) The Nup107-160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol Biol Cell 20:5260–5275

    CAS  PubMed  Google Scholar 

  108. Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H (2004) The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118:187–202

    CAS  PubMed  Google Scholar 

  109. Mackay DR, Elgort SW, Ullman KS (2009) The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol Biol Cell 20:1652–1660

    CAS  PubMed  Google Scholar 

  110. Sabri N, Roth P, Xylourgidis N, Sadeghifar F, Adler J, Samakovlis C (2007) Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. J Cell Biol 178:557–565

    CAS  PubMed  Google Scholar 

  111. Hase ME, Cordes VC (2003) Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 14:1923–1940

    CAS  PubMed  Google Scholar 

  112. Hang J, Dasso M (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 277:19961–19966

    CAS  PubMed  Google Scholar 

  113. Glavy JS, Krutchinsky AN, Cristea IM, Berke IC, Boehmer T, Blobel G, Chait BT (2007) Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex. Proc Natl Acad Sci USA 104:3811–3816

    CAS  PubMed  Google Scholar 

  114. Mishra RK, Chakraborty P, Arnauoutov A, Fontoura BMA, Dasso M (2010) The Nup107-160 complex and γ-TuRC regulate microtubule polymerization at kinetochores. Nat Cell Biol 12:164–169

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank “la Fondation des Treilles” (http://www.les-treilles.com) for organizing the first transport and cell cycle meeting in 2007 at the very time when most of the data and concepts now included in this review were emerging (http://www.les-treilles.com/ssimages/c_2007_09_Doye_Wozniak.html). The authors also wish to acknowledge the following agencies for funding: la Ligue Nationale contre le Cancer (V.D., Equipe Labellisée 2006–2009), the Agence Nationale de la Recherche (to V.D.), Canadian Institutes of Health Research (to R.W.W.), the Alberta Heritage Foundation for Medical Research (to R.W.W.), the Howard Hughes Medical Institute (to R.W.W.), and the National Institutes of Health (to B.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wozniak.

Additional information

R. Wozniak, B. Burke, and V. Doye contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wozniak, R., Burke, B. & Doye, V. Nuclear transport and the mitotic apparatus: an evolving relationship. Cell. Mol. Life Sci. 67, 2215–2230 (2010). https://doi.org/10.1007/s00018-010-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0325-7

Keywords

Navigation