Skip to main content
Log in

Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The luteinizing hormone receptor (LHR) is a G protein-coupled receptor (GPCR) particularly susceptible to spontaneous pathogenic gain-of-function mutations. Protein structure network (PSN) analysis on wild-type LHR and two constitutively active mutants, combined with in vitro mutational analysis, served to identify key amino acids that are part of the regulatory network responsible for propagating communication between the extracellular and intracellular poles of the receptor. Highly conserved amino acids in the rhodopsin family GPCRs participate in the protein structural stability as network hubs in both the inactive and active states. Moreover, they behave as the most recurrent nodes in the communication paths between the extracellular and intracellular sides in both functional states with emphasis on the active one. In this respect, non-conservative loss-of-function mutations of these amino acids is expected to impair the most relevant way of communication between activating mutation sites or hormone-binding domain and G protein recognition regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ascoli M, Puett D (2009) The gonadotropin hormones and their receptors. In: Strauss JF III, Barbieri RR (eds) Yen and Jaffee’s reproductive endocrinology, 6th edn. Elsevier, Philadelphia, pp 33–55

    Google Scholar 

  2. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  PubMed  CAS  Google Scholar 

  3. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 342:571–583

    Article  PubMed  CAS  Google Scholar 

  4. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  PubMed  CAS  Google Scholar 

  5. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  PubMed  CAS  Google Scholar 

  6. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  7. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  8. Fanelli F, De Benedetti PG (2005) Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 105:3297–3351

    Article  PubMed  CAS  Google Scholar 

  9. Angelova K, Fanelli F, Puett D (2002) A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7. J Biol Chem 277:32202–32213

    Article  PubMed  CAS  Google Scholar 

  10. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure–function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  11. del Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Syst Biol 2:1–12

    Google Scholar 

  12. Vishveshwara S, Ghosh A, Hansia P (2009) Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci 10:146–160

    Article  PubMed  CAS  Google Scholar 

  13. Vendruscolo M, Dokholyan NV, Paci E, Karplus M (2002) Small-world view of the amino acids that play a key role in protein folding. Phys Rev E Stat Nonlin Soft Matter Phys 65:061910

    Article  PubMed  CAS  Google Scholar 

  14. del Sol A, O’Meara P (2005) Small-world network approach to identify key residues in protein–protein interaction. Proteins 58:672–682

    Article  PubMed  CAS  Google Scholar 

  15. Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S (2004) Network analysis of protein structures identifies functional residues. J Mol Biol 344:1135–1146

    Article  PubMed  CAS  Google Scholar 

  16. Vishveshwara, S, Brinda, KV, Kannan N (2002) Protein structure: insights from graph theory. J Theo Comp Chem 1:187–211

    Google Scholar 

  17. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  18. Angelova K, Fanelli F, Puett D (2008) Contributions of intracellular loops 2 and 3 of the lutropin receptor in gs coupling. Mol Endocrinol 22:126–138

    Article  PubMed  CAS  Google Scholar 

  19. Im W, Feig M, Brooks CL 3rd (2003) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  PubMed  CAS  Google Scholar 

  20. Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23:2625–2627

    Article  PubMed  CAS  Google Scholar 

  21. Vishveshwara S, Brinda KV, Kannan N (2002) Protein structure: insights from graph theory. J Theor Comput Chem 1:187–211

    Article  CAS  Google Scholar 

  22. Vishveshwara S, Ghosh A, Hansia P (2009) Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci 10:146–160

    Article  PubMed  CAS  Google Scholar 

  23. Kannan N, Vishveshwara S (1999) Identification of side-chain clusters in protein structures by a graph spectral method. J Mol Biol 292:441–464

    Article  PubMed  CAS  Google Scholar 

  24. Brinda KV, Vishveshwara S (2005) A network representation of protein structures: implications for protein stability. Biophys J 89:4159–4170

    Article  PubMed  CAS  Google Scholar 

  25. Lange OF, Grubmuller H (2006) Generalized correlation for biomolecular dynamics. Proteins Struct Funct Bioinformat 62:1053–1061

    Article  CAS  Google Scholar 

  26. Puett D, Angelova K (2009) Determining the affinity of hormone–receptor interaction. In: Park-Sarge OK, Curry Jr. TE (eds) Molecular endocrinology: methods and protocols, vol 590. Humana Press/Springer Protocols, New York, pp 1–20

  27. Ballesteros J, Kitanovic S, Guarnieri F, Davies P, Fromme BJ, Konvicka K, Chi L, Millar RP, Davidson JS, Weinstein H, Sealfon SC (1998) Functional microdomains in G-protein-coupled receptors. The conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. J Biol Chem 273:10445–10453

    Article  PubMed  CAS  Google Scholar 

  28. Kosugi S, Mori T, Shenker A (1998) An anionic residue at position 564 is important for maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. Mol Pharmacol 53:894–901

    PubMed  CAS  Google Scholar 

  29. Laue L, Chan WY, Hsueh AJ, Kudo M, Hsu SY, Wu SM, Blomberg L, Cutler GB Jr (1995) Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male-limited precocious puberty. Proc Natl Acad Sci USA 92:1906–1910

    Article  PubMed  CAS  Google Scholar 

  30. Min L, Ascoli M (2000) Effect of activating and inactivating mutations on the phosphorylation and trafficking of the human lutropin/choriogonadotropin receptor. Mol Endocrinol 14:1797–1810

    Article  PubMed  CAS  Google Scholar 

  31. Zhang M, Feng X, Guan R, Hebert TE, Segaloff DL (2009) A cell surface inactive mutant of the human lutropin receptor (hLHR) attenuates signaling of wild-type or constitutively active receptors via heterodimerization. Cell Signal 21:1663–1671

    Article  PubMed  CAS  Google Scholar 

  32. Ascoli M, Fanelli F, Segaloff DL (2002) The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 23:141–174

    Article  PubMed  CAS  Google Scholar 

  33. Fanelli F, Verhoef-Post M, Timmerman M, Zeilemaker A, Martens JW, Themmen AP (2004) Insight into mutation-induced activation of the luteinizing hormone receptor: molecular simulations predict the functional behavior of engineered mutants at M398. Mol Endocrinol 18:1499–1508

    Article  PubMed  CAS  Google Scholar 

  34. Kosugi S, Mori T, Shenker A (1996) The role of Asp578 in maintaining the inactive conformation of the human lutropin/choriogonadotropin receptor. J Biol Chem 271:31813–31817

    Article  PubMed  CAS  Google Scholar 

  35. Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42:2759–2767

    Article  PubMed  CAS  Google Scholar 

  36. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  37. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  PubMed  CAS  Google Scholar 

  38. Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272:2587–2590

    Article  PubMed  CAS  Google Scholar 

  39. Zhang M, Mizrachi D, Fanelli F, Segaloff DL (2005) The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. J Biol Chem 280:26169–26176

    Article  PubMed  CAS  Google Scholar 

  40. Schulz A, Bruns K, Henklein P, Krause G, Schubert M, Gudermann T, Wray V, Schultz G, Schoneberg T (2000) Requirement of specific intrahelical interactions for stabilizing the inactive conformation of glycoprotein hormone receptors. J Biol Chem 275:37860–37869

    Article  PubMed  CAS  Google Scholar 

  41. Angelova K, Narayan P, Simon JP, Puett D (2000) Functional role of transmembrane helix 7 in the activation of the heptahelical lutropin receptor. Mol Endocrinol 14:459–471

    Article  PubMed  CAS  Google Scholar 

  42. Fernandez LM, Puett D (1996) Identification of amino acid residues in transmembrane helices VI and VII of the lutropin/choriogonadotropin receptor involved in signaling. Biochemistry 35:3986–3993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, DK33973 and DK69711 (to D.P.) and by a Telethon-Italy grant no. S00068TELU (To F.F.). We thank Judy Gray for her expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Puett or Francesca Fanelli.

Additional information

K. Angelova and A. Felline contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelova, K., Felline, A., Lee, M. et al. Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor. Cell. Mol. Life Sci. 68, 1227–1239 (2011). https://doi.org/10.1007/s00018-010-0519-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0519-z

Keywords

Navigation