Skip to main content
Log in

Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell polarization is a fundamental process underpinning organismal development, and tissue homeostasis, which requires an orchestrated interplay of nuclear, cytoskeletal, and centrosomal structures. The underlying molecular mechanisms, however, still remain elusive. Here we report that kinesin-1/nesprin-2/SUN-domain macromolecular assemblies, spanning the entire nuclear envelope (NE), function in cell polarization by anchoring cytoskeletal structures to the nuclear lamina. Nesprin-2 forms complexes with the kinesin-1 motor protein apparatus by associating with and recruiting kinesin light chain1 (KLC1) to the outer nuclear membrane. Similar to nesprin-2, KLC1 requires lamin A/C for proper NE localization. The depletion of nesprin-2 or KLC1, or the uncoupling of nesprin-2/SUN-domain protein associations impairs cell polarization during wounding and dislodges the centrosome from the NE. In addition nesprin-2 loss has profound effects on KLC1 levels, the cytoskeleton, and Golgi apparatus organization. Collectively these data show that NE-associated proteins are pivotal determinants of cell architecture and polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a, b
Fig. 2a–g
Fig. 3a–j
Fig. 4a–d
Fig. 5a–c
Fig. 6a–e
Fig. 7a–e
Fig. 8a–e
Fig. 9a–g
Fig. 10a, b

Similar content being viewed by others

Abbreviations

AD:

Gal4-activating domain

BD:

Gal4-DNA-binding domain

β-gal:

β-Galactosidase

CT:

C-terminus

DN:

Dominant negative

ER:

Endoplasmic reticulum

G:

Giant

GST:

Glutathione-S-transferase

GFP:

Green fluorescent protein

IF:

Intermediate filament

KHC:

Kinesin heavy chain

KLC:

Kinesin light chain

MT:

Microtubule

NE:

Nuclear envelope

N2-SR:

Nesprin-2 SR

NT:

N-terminus

PDI:

Protein disulfide isomerase

Pc:

Pericentrin

shRNA:

Small hairpin RNA

SP:

Signal peptide

SR:

Spectrin repeat

TPR:

Tetratricopeptide repeat

WB:

Western blot

WT:

Wild type

References

  1. Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873

    Article  PubMed  CAS  Google Scholar 

  2. Yadav S, Puri S, Linstedt AD (2009) Primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell 20:1728–1736

    Article  PubMed  CAS  Google Scholar 

  3. Starr DA (2007) Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Mol Biosyst 3:583–589

    Article  PubMed  CAS  Google Scholar 

  4. Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 122:577–586

    Article  PubMed  CAS  Google Scholar 

  5. Schneider M, Noegel AA, Karakesisoglou I (2008) KASH-domain proteins and the cytoskeletal landscapes of the nuclear envelope. Biochem Soc Trans 36:1368–1372

    Article  PubMed  CAS  Google Scholar 

  6. Shimanuki M, Miki F, Ding DQ, Chikashige Y, Hiraoka Y, Horio T, Niwa O (1997) A novel fission yeast gene, kms1+, is required for the formation of meiotic prophase-specific nuclear architecture. Mol Gen Genet 254:238–249

    Article  PubMed  CAS  Google Scholar 

  7. Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836

    Article  PubMed  CAS  Google Scholar 

  8. Patterson K, Molofsky AB, Robinson C, Acosta S, Cater C, Fischer JA (2004) The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol Biol Cell 15:600–610

    Article  PubMed  CAS  Google Scholar 

  9. Wilhelmsen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810

    Article  PubMed  CAS  Google Scholar 

  10. Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci USA 106:2194–2199

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Q, Ragnauth C, Greener MJ, Shanahan CM, Roberts RG (2002) The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics 80:473–481

    Article  PubMed  CAS  Google Scholar 

  12. Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222

    PubMed  CAS  Google Scholar 

  13. Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I, Korenbaum E (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295:330–339

    Article  PubMed  CAS  Google Scholar 

  14. Dawe HR, Adams M, Wheway G, Szymanska K, Logan CV, Noegel AA, Gull K, Johnson CA (2009) Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 122:2716–2726

    Article  PubMed  CAS  Google Scholar 

  15. Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 118:3419–3430

    Article  PubMed  CAS  Google Scholar 

  16. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53

    Article  PubMed  CAS  Google Scholar 

  17. Lu W, Gotzmann J, Sironi L, Jaeger VM, Schneider M, Luke Y, Uhlen M, Szigyarto CA, Brachner A, Ellenberg J, Foisner R, Noegel AA, Karakesisoglou I (2008) Sun1 forms immobile macromolecular assemblies at the nuclear envelope. Biochim Biophys Acta 1783:2415–2426

    Article  PubMed  CAS  Google Scholar 

  18. Muchir A, van Engelen BG, Lammens M, Mislow JM, McNally E, Schwartz K, Bonne G (2003) Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp Cell Res 291:352–362

    Article  PubMed  CAS  Google Scholar 

  19. Libotte T, Zaim H, Abraham S, Padmakumar VC, Schneider M, Lu W, Munck M, Hutchison C, Wehnert M, Fahrenkrog B, Sauder U, Aebi U, Noegel AA, Karakesisoglou I (2005) Lamin A/C dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope. Mol Biol Cell 16:3411–3424

    Article  PubMed  CAS  Google Scholar 

  20. Kandert S, Lüke Y, Kleinhenz T, Neumann S, Lu W, Jaeger VM, Munck M, Wehnert M, Müller CR, Zhou Z, Noegel AA, Dabauvalle MC, Karakesisoglou I (2007) Nesprin-2 giant safeguards nuclear envelope architecture in LMNA S143F progeria cells. Hum Mol Genet 16:2944–2959

    Article  PubMed  CAS  Google Scholar 

  21. Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ (2006) Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 86:967–1008

    Article  PubMed  CAS  Google Scholar 

  22. Mattout A, Dechat T, Adam SA, Goldman RD, Gruenbaum Y (2006) Nuclear lamins, diseases and aging. Curr Opin Cell Biol 18:335–341

    Article  PubMed  CAS  Google Scholar 

  23. Lee JS, Hale CM, Panorchan P, Khatau SB, George JP, Tseng Y, Stewart CL, Hodzic D, Wirtz D (2007) Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93:2542–2552

    Article  PubMed  CAS  Google Scholar 

  24. Hale CM, Shrestha AL, Khatau SB, Stewart-Hutchinson PJ, Hernandez L, Stewart CL, Hodzic D, Wirtz D (2008) Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys J 95:5462–5475

    Article  PubMed  CAS  Google Scholar 

  25. Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 314:1892–1905

    Article  PubMed  CAS  Google Scholar 

  26. Houben F, Willems CH, Declercq IL, Hochstenbach K, Kamps MA, Snoeckx LH, Ramaekers FC, Broers JL (2009) Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells. Biochim Biophys Acta 1793:312–324

    Article  PubMed  CAS  Google Scholar 

  27. Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard JP, Rouleau GA (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M, Shanahan CM (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  PubMed  CAS  Google Scholar 

  29. Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469

    Article  PubMed  CAS  Google Scholar 

  30. Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK, Pytel P, McNally EM (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620

    Article  PubMed  CAS  Google Scholar 

  31. Luke Y, Zaim H, Karakesisoglou I, Jaeger VM, Sellin L, Lu W, Schneider M, Neumann S, Beijer A, Munck M, Padmakumar VC, Gloy J, Walz G, Noegel AA (2008) Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci 121:1887–1898

    Article  PubMed  Google Scholar 

  32. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908

    Article  PubMed  CAS  Google Scholar 

  33. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  PubMed  CAS  Google Scholar 

  34. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  35. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  36. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  37. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  38. Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    PubMed  CAS  Google Scholar 

  39. Xiong H, Rivero F, Euteneuer U, Mondal S, Mana-Capelli S, Larochelle D, Vogel A, Gassen B, Noegel AA (2008) Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic 9:708–724

    Article  PubMed  CAS  Google Scholar 

  40. Noegel AA, Blau-Wasser R, Sultana H, Muller R, Israel L, Schleicher M, Patel H, Weijer CJ (2004) The cyclase-associated protein CAP as regulator of cell polarity and cAMP signaling in Dictyostelium. Mol Biol Cell 15:934–945

    Article  PubMed  CAS  Google Scholar 

  41. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  42. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  43. Konecna A, Frischknecht R, Kinter J, Ludwig A, Steuble M, Meskenaite V, Indermuhle M, Engel M, Cen C, Mateos JM, Streit P, Sonderegger P (2006) Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol Biol Cell 17:3651–3663

    Article  PubMed  CAS  Google Scholar 

  44. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  45. Wang Q, Du X, Cai Z, Greene MI (2006) Characterization of the structures involved in localization of the SUN proteins to the nuclear envelope and the centrosome. DNA Cell Biol 25:554–562

    Article  PubMed  CAS  Google Scholar 

  46. Kodama A, Karakesisoglou I, Wong E, Vaezi A, Fuchs E (2003) ACF7: an essential integrator of microtubule dynamics. Cell 115:343–354

    Article  PubMed  CAS  Google Scholar 

  47. Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463

    Article  PubMed  CAS  Google Scholar 

  48. Gotzmann J, Foisner R (2006) A-type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases? Histochem Cell Biol 125:33–41

    Article  PubMed  CAS  Google Scholar 

  49. Meyerzon M, Fridolfsson HN, Ly N, McNally FJ, Starr DA (2009) UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration. Development 136:2725–2733

    Article  PubMed  CAS  Google Scholar 

  50. Stenoien DL, Brady ST (1997) Immunochemical analysis of kinesin light chain function. Mol Biol Cell 8:675–689

    PubMed  CAS  Google Scholar 

  51. Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA (1998) Light chain-dependent regulation of Kinesin’s interaction with microtubules. J Cell Biol 143:1053–1066

    Article  PubMed  CAS  Google Scholar 

  52. Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557

    Article  PubMed  CAS  Google Scholar 

  53. Koizumi H, Gleeson JG (2009) Sun proteins enlighten nuclear movement in development. Neuron 64:147–149

    Article  PubMed  CAS  Google Scholar 

  54. Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30:276–283

    Article  PubMed  CAS  Google Scholar 

  55. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  PubMed  CAS  Google Scholar 

  56. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D, Wirtz D (2009) A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA 106:19017–19022

    Article  PubMed  CAS  Google Scholar 

  57. Mejat A, Decostre V, Li J, Renou L, Kesari A, Hantai D, Stewart CL, Xiao X, Hoffman E, Bonne G, Misteli T (2009) Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. J Cell Biol 184:31–44

    Article  PubMed  CAS  Google Scholar 

  58. Gyoeva FK, Bybikova EM, Minin AA (2000) An isoform of kinesin light chain specific for the Golgi complex. J Cell Sci 113:2047–2054

    PubMed  CAS  Google Scholar 

  59. Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178:897–904

    Article  PubMed  CAS  Google Scholar 

  60. Meraldi P, Nigg EA (2001) Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 114:3749–3757

    PubMed  CAS  Google Scholar 

  61. Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8:e1000350

    Article  PubMed  Google Scholar 

  62. Rahman A, Kamal A, Roberts EA, Goldstein LS (1999) Defective kinesin heavy chain behavior in mouse kinesin light chain mutants. J Cell Biol 146:1277–1288

    Article  PubMed  CAS  Google Scholar 

  63. Cai D, Hoppe AD, Swanson JA, Verhey KJ (2007) Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 176:51–63

    Article  PubMed  CAS  Google Scholar 

  64. Blasius TL, Cai D, Jih GT, Toret CP, Verhey KJ (2007) Two binding partners cooperate to activate the molecular motor Kinesin-1. J Cell Biol 176:11–17

    Article  PubMed  CAS  Google Scholar 

  65. Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171:27–33

    Article  PubMed  CAS  Google Scholar 

  66. Yang J, Adamian M, Li T (2006) Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17:1033–1040

    Article  PubMed  CAS  Google Scholar 

  67. Yang J, Li T (2005) The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos. Exp Cell Res 309:379–389

    Article  PubMed  CAS  Google Scholar 

  68. Bornens M (1977) Is the centriole bound to the nuclear membrane? Nature 270:80–82

    Article  PubMed  CAS  Google Scholar 

  69. Nadezhdina ES, Fais D, Chentsov YS (1979) On the association of centrioles with the interphase nucleus. Eur J Cell Biol 19:109–115

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. S.T. Brady, R.D. Vale, W.T. Dauer, C.J. Hutchinson, and U. Euteneuer for providing reagents. We thank Dr. Martin Goldberg for critically reading the manuscript and Drs. R. Foisner, P.J. Hussey, R. Quinlan, and A. Smertenko for valuable discussions, as well as M. Munck and R. Blau-Wasser for technical advice. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (KA 2778/1-1), the St. Moritz-Foundation, and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iakowos Karakesisoglou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2010_535_MOESM1_ESM.doc

Supplemental Table 1: Vectors, inserts, amino acids, primers and comments regarding plasmid construction of molecular reagents used in the present manuscript. (DOC 64 kb)

18_2010_535_MOESM2_ESM.jpeg

Supplementary Fig. S1 KASH-domain protein associations with the inner nuclear membrane determine cellular polarization. Monolayers of WT (A, C) and two independent, stably transfected DN-SUNL HaCaT cell clones (A’-A’’, C’-C’’) were wounded and subjected after 6 hours to indirect immunofluorescence using antibodies against pericentrin (Pc, centrosome, A-A’’) and Gm130 (Golgi, C-C’’). Nuclei were visualized with DAPI. The dashed lines indicate the migration front. Note that centrosomes and Golgi structures are not positioned towards the leading edge in DN-SUNL expressing clones (arrows). (B and D) Statistical evaluation of the representative experiments shown in A-A’’ and C-C’’ indicates a defective organelle polarization in DN-SUNL expressing cells. Centrosomes and Golgi positioned within a 120° sector facing the wound were assessed as polarized. Results are the mean ± SD Scale bars 10 µm. (JPG 325 kb)

18_2010_535_MOESM3_ESM.jpeg

Supplementary Fig. S2 KLC1 and MTs colocalize at the NE in various cell lines. Indirect immunofluorescence was performed on primary mouse fibroblasts (A-A’’) and COS7 cells (B-B’’) using KLC1 (pAb H-75; panels A, B) and tubulin (mAb WA3; panels A’, B’) specific antibodies. Scale bars: 10 µm. (JPG 421 kb)

18_2010_535_MOESM4_ESM.jpeg

Supplementary Fig. S3 Nesprin-2 silencing affects KLC expression levels. Equal amounts of untransfected HaCaT cell lysates as well as protein homogenates from control and nesprin-2 C-terminal RNAi transfected HaCaT cells were separated through gradient SDS-PAGE and subjected to Western blot analysis. (JPG 85 kb)

18_2010_535_MOESM5_ESM.jpeg

Supplementary Fig. S4 Nesprin-2 loss affects F-actin organization. Indirect immunofluorescence analysis using nesprin-2 (pAb Nes2CT) antibodies and F-actin counterstaining (FITC-Phalloidin: Phall) were performed on transiently transfected control (A) and nesprin-2 knock-down (B) HaCaT cells. DAPI was used to visualise the nuclei. Insets (A’, B’) are higher magnifications of denoted areas in panels A and B. While in nesprin-2 positive control cells (A’, arrowheads) Phalloidin staining is preferentially accumulated at cell-cell junctions, or the cell cortex (A’, arrows), in nesprin-2 silenced cells (B’, arrowheads) the Phalloidin staining reveals pronounced arrays of stress fibers (B’, arrows). (JPG 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, M., Lu, W., Neumann, S. et al. Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope. Cell. Mol. Life Sci. 68, 1593–1610 (2011). https://doi.org/10.1007/s00018-010-0535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0535-z

Keywords

Navigation