Skip to main content
Log in

Chaperone-mediated autophagy: machinery, regulation and biological consequences

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Degradation of dysfunctional intracellular components in the lysosome system can occur through three different pathways, i.e., macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). In this review, we focus on CMA, a type of autophagy distinct from the other two autophagic pathways owing to its selectivity, saturability and competitivity by which a subset of long-lived cytosolic soluble proteins are directly delivered into the lysosomal lumen via specific receptors. CMA participates in quality control to maintain normal cell functions by clearing “old” proteins and provides energy to cells under nutritional stress. Deregulation of CMA has recently been shown to underlie some diseases, especially neurodegenerative disorders for which the decline with age in the activity of CMA may become a major aggravating factor. Therefore, targeting aberrant alteration in CMA under pathological conditions could serve as a potential therapeutic strategy for treating related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin–proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 782:691–699

    Google Scholar 

  2. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    CAS  PubMed  Google Scholar 

  3. Orenstein SJ, Cuervo AM (2010) Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21:719–726

    CAS  PubMed  Google Scholar 

  4. Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146:609–616

    CAS  PubMed  Google Scholar 

  5. Sato Y, Sakamoto K, Sei M, Ewis AA, Nakahori Y (2009) Proteasome subunits are regulated and expressed in comparable concentrations as a functional cluster. Biochem Biophys Res Commun 378:795–798

    CAS  PubMed  Google Scholar 

  6. Nagy V, Dikic I (2010) Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity. J Biol Chem 391:163–169

    CAS  Google Scholar 

  7. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409

    CAS  PubMed  Google Scholar 

  8. Korolchuk VI, Menzies FM, Rubinsztein DC (2010) Mechanisms of cross-talk between the ubiquitin–proteasome and autophagy-lysosome systems. FEBS Lett 584:1393–1398

    CAS  PubMed  Google Scholar 

  9. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20(2):143–148

    CAS  PubMed  Google Scholar 

  10. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mul JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151

    CAS  PubMed  Google Scholar 

  11. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    CAS  PubMed  Google Scholar 

  12. Koga H, Cuervo AM (2010) 17 Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis. doi:10.1016/j.nbd.2010.07.006

    PubMed  Google Scholar 

  13. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    CAS  PubMed  Google Scholar 

  14. Dice JF (1982) Altered degradation of proteins microinjected into senescent human fibroblasts. J Biol Chem 257:14624–14627

    CAS  PubMed  Google Scholar 

  15. Backer JM, Bourret L, Dice JF (1983) Regulation of catabolism of microinjected ribonuclease A requires the amino-terminal 20 amino acids. Proc Natl Acad Sci USA 80:2166–2170

    CAS  PubMed  Google Scholar 

  16. Dice JF, Chiang HL, Spencer EP, Backer JM (1986) Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem 261:6853–6859

    CAS  PubMed  Google Scholar 

  17. Dice JF (1987) Molecular determinants of protein half-lives in eukaryotic cells. FASEB J 1:349–357

    CAS  PubMed  Google Scholar 

  18. Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-KDa heat shock protein in lysosomal degradation of intracellular proteins. Science 246:382–385

    CAS  PubMed  Google Scholar 

  19. Cuervo AM, Terlecky SR, Dice JF, Knecht E (1994) Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J Biol Chem 269:26374–26380

    CAS  PubMed  Google Scholar 

  20. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    CAS  PubMed  Google Scholar 

  21. Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal Hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834

    CAS  PubMed  Google Scholar 

  22. Dice JF (2000) Lysosomal pathways of protein degradation, Molecular Biology Intelligence Unit, Landes Bioscience, Austin, TX

  23. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    CAS  PubMed  Google Scholar 

  24. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meeting function. Nat Rev Mol Cell Biol 10:623–635

    CAS  PubMed  Google Scholar 

  25. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444

    CAS  PubMed  Google Scholar 

  26. Murphy RF (1991) Maturation models for endosome and lysosome biogenesis. Trends Cell Biol 1:77–82

    CAS  PubMed  Google Scholar 

  27. Holtzman E (1989) Lysosomes (p. 439). Plenum Press, New York

    Google Scholar 

  28. Conus S, Simon HU (2008) Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76:1374–1382

    CAS  PubMed  Google Scholar 

  29. Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137–145

    CAS  PubMed  Google Scholar 

  30. Kettern N, Dreiseidler M, Tawo R, Höhfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391:481–489

    CAS  PubMed  Google Scholar 

  31. Newmyer S, Christensen A, Sever S (2003) Auxilindynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Developmental Cell 4:929–940

    CAS  PubMed  Google Scholar 

  32. Agarraberes F, Dice J (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499

    CAS  PubMed  Google Scholar 

  33. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456

    CAS  PubMed  Google Scholar 

  34. Thoms S (2002) Cdc48 can distinguish between native and nonnative proteins in the absence of cofactors. FEBS Lett 520:107–110

    CAS  PubMed  Google Scholar 

  35. Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan J, Singh S, Millson S, Clarke P, Naaby-Hansen S, Stein R, Cramer R, Mollapour M, Workman P, Piper P, Pearl L, Prodromou C (2002) Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone aha1. Molecular Cell 10:1307–1318

    CAS  PubMed  Google Scholar 

  36. Bimston D, Song J, Winchester D, Takayama S, Reed JC, Morimoto RI (1998) BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J 17:6871–6878

    CAS  PubMed  Google Scholar 

  37. Alberti S, Esser C, Höhfeld J (2003) BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    PubMed  Google Scholar 

  38. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734

    CAS  PubMed  Google Scholar 

  39. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Höhfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276(46):42938–42944

    CAS  PubMed  Google Scholar 

  40. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperonemediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28:5747–5763

    CAS  PubMed  Google Scholar 

  41. Cuervo A, Dice J (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113:4441–4450

    CAS  PubMed  Google Scholar 

  42. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906

    CAS  PubMed  Google Scholar 

  43. Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, Tanaka Y, Lüllmann-Rauch R, Hartmann D, Heeren J, von Figura K, Knecht E, Saftig P (2004) Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 15:3132–3145

    CAS  PubMed  Google Scholar 

  44. Dice J (1988) Microinjected ribonuclease A as a probe for lysosomal pathways of intracellular protein degradation. J Protein Chem 7:115–127

    CAS  PubMed  Google Scholar 

  45. Finn PF, Mesires NT, Vine M, Dice JF (2005) Effects of small molecules on chaperone-mediated autophagy. Autophagy 1:141–145

    CAS  PubMed  Google Scholar 

  46. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3:295–299

    CAS  PubMed  Google Scholar 

  47. Chiang H, Dice J (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 262:6797–6805

    Google Scholar 

  48. Cuervo A, Gomes J, Barnes A, Dice J (2000) Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 275:33329–33335

    CAS  PubMed  Google Scholar 

  49. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z (2009) Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323:124–127

    CAS  PubMed  Google Scholar 

  50. Cuervo AM, Dice JF (2009) Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med 76:6–12

    Google Scholar 

  51. Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150

    CAS  PubMed  Google Scholar 

  52. Bandyopadhyay U, Cuervo AM (2007) Chaperone-mediated autophagy in aging and neurodegeneration: lessons from alpha-synuclein. Exp Gerontol 42:120–128

    PubMed  Google Scholar 

  53. Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8(13):1986–1990

    CAS  PubMed  Google Scholar 

  54. Kirkin V, Lamark T, Johansen T, Dikic I (2009) NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5:732–733

    CAS  PubMed  Google Scholar 

  55. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72

    CAS  PubMed  Google Scholar 

  56. Welsch T, Younsi A, Disanza A, Rodriguez JA, Cuervo AM, Scita G, Schmidt J (2010) Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells. Exp Cell Res 316:1914–1924

    CAS  PubMed  Google Scholar 

  57. Liu H, Wang P, Song W, Sun X (2009) Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways. FASEB J 23:3383–3392

    CAS  PubMed  Google Scholar 

  58. Bandyopadhyay U, Cuervo AM (2008) Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy 4:1101–1103

    CAS  PubMed  Google Scholar 

  59. Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    CAS  PubMed  Google Scholar 

  60. Kaushik S, Massey AC, Cuervo AM (2006) Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 25:3921–3933

    CAS  PubMed  Google Scholar 

  61. Cuervo AM, Mann L, Bonten EJ, d′Azzo A, Dice JF (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22:47–59

    CAS  PubMed  Google Scholar 

  62. Cuervo AM, Dice JF (2000) Regulation of lamp2a levels in the lysosomal membrane. Traffic 1:570–583

    CAS  PubMed  Google Scholar 

  63. Kaushik S, Kiffin R, Cuervo AM (2007) Chaperone-mediated autophagy and aging: a novel regulatory role of lipids revealed. Autophagy 3:387–389

    CAS  PubMed  Google Scholar 

  64. Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM (2010) Identification of regulators of chaperone-mediated autophagy. Mol Cell 39:535–547

    CAS  PubMed  Google Scholar 

  65. Kaushik S, Massey AC, Mizushima N, Cuervo AM (2008) Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell 19:2179–2192

    CAS  PubMed  Google Scholar 

  66. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA 103:5805–5810

    CAS  PubMed  Google Scholar 

  67. Singh R, Czaja MJ (2008) Compensatory mechanisms and the type of injury determine the fate of cells with impaired macroautophagy. Autophagy 4:516–518

    CAS  PubMed  Google Scholar 

  68. Cuervo AM, Dice JF, Knecht E (1997) A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 272:5606–5615

    CAS  PubMed  Google Scholar 

  69. Massey AC, Follenzi A, Kiffin R, Zhang C, Cuervo AM (2008) Early cellular changes after blockage of chaperone-mediated autophagy. Autophagy 4:442–4456

    CAS  PubMed  Google Scholar 

  70. Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12:836–841

    CAS  PubMed  Google Scholar 

  71. Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J, Fang S, Cuervo AM, Nixon RA, Monteiro MJ (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19:3219–3232

    CAS  PubMed  Google Scholar 

  72. Rothenberg C, Monteiro MJ (2010) Ubiquilin at a crossroads in protein degradation pathways. Autophagy 6:101–102

    Google Scholar 

  73. Zhou D, Li P, Lin Y, Lott JM, Hislop AD, Canaday DH, Brutkiewicz RR, Blum JS (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22:571–581

    CAS  PubMed  Google Scholar 

  74. Strawbridge AB, Blum JS (2007) Autophagy in MHC class II antigen processing. Curr Opin Immunol 19:87–92

    CAS  PubMed  Google Scholar 

  75. Wing S, Chiang H, Goldberg A, Dice J (1991) Proteins containing peptide sequences related to KFERQ are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem J 275:165–169

    CAS  PubMed  Google Scholar 

  76. Cuervo AM, Hu W, Lim B, Dice JF (1998) IκB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 9:1995–2010

    CAS  PubMed  Google Scholar 

  77. Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965

    CAS  PubMed  Google Scholar 

  78. Bejarano E, Cuervo AM (2010) Chaperone-mediated autophagy. Proc Am Thorac Soc 7:29–39

    PubMed  Google Scholar 

  79. Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante JM, Dice JF, Slaugenhaupt SA (2009) Chaperone-mediated autophagy is defective in mucolipidosis type IV. J Cell Physiol 219:344–353

    CAS  PubMed  Google Scholar 

  80. Fidzianska A, Walczak E, Walski M (2007) Abnormal chaperone-mediated autophagy (CMA) in cardiomyocytes of a boy with Danon disease. Folia Neuropathol 45:133–139

    PubMed  Google Scholar 

  81. Shacka JJ, Roth KA, Zhang J (2008) The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy. Front Biosci 13:718–736

    CAS  PubMed  Google Scholar 

  82. Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235

    CAS  PubMed  Google Scholar 

  83. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    CAS  PubMed  Google Scholar 

  84. Kon Maria, Cuervo AnaMaria (2010) Chaperone-mediated autophagy in health and disease. FEBS Lett 584:1399–1404

    CAS  PubMed  Google Scholar 

  85. Veazey C, Aki SO, Cook KF, Lai EC, Kunik ME (2005) Prevalence and treatment of depression in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 17:310–323

    PubMed  Google Scholar 

  86. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788

    CAS  PubMed  Google Scholar 

  87. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285:13621–13629

    CAS  PubMed  Google Scholar 

  88. Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264

    CAS  PubMed  Google Scholar 

  89. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    CAS  PubMed  Google Scholar 

  90. Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LA, Marshall J, Mao Z (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46

    CAS  PubMed  Google Scholar 

  91. Wang X, Tang X, Li M, Marshall J, Mao Z (2005) Regulation of neuroprotective activity of myocyte-enhancer factor 2 by cAMP-protein kinase A signaling pathway in neuronal survival. J Biol Chem 280:16705–16713

    CAS  PubMed  Google Scholar 

  92. Tang X, Wang X, Gong X, Tong M, Park D, Xia Z, Mao Z (2005) Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J Neurosci 25:4823–4834

    CAS  PubMed  Google Scholar 

  93. Irrcher I, Park DS (2009) Parkinson’s disease: to live or die by autophagy. Sci Signal 2:pe21

    PubMed  Google Scholar 

  94. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    CAS  PubMed  Google Scholar 

  95. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170

    CAS  PubMed  Google Scholar 

  96. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2010) Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy 6:182–183

    PubMed  Google Scholar 

  97. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, Miyazaki H, Matsumoto G, Kino Y, Nagai Y, Nukina N (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28:256–263

    CAS  PubMed  Google Scholar 

  98. Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187:1083–1099

    CAS  PubMed  Google Scholar 

  99. Cuervo A, Hildebrand H, Bomhard E, Dice J (1999) Direct lysosomal uptake of 2-microglobulin contributes to chemically induced nephropathy. Kidney Int 55:529–545

    CAS  PubMed  Google Scholar 

  100. Sooparb S, Price SR, Shaoguang J, Franch HA (2004) Suppression of chaperone mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int 65:2135–2144

    CAS  PubMed  Google Scholar 

  101. Maalouf M, Rhob J, Mattson M (2009) The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59:293–315

    CAS  PubMed  Google Scholar 

  102. Mattson M (2008) Dietary factors, hormesis and health. Ageing Res Rev 7:43–48

    PubMed  Google Scholar 

  103. Finn PF, Dice JF (2005) Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem 280:25864–25870

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Brian Ciliax and Gary Miller for their critical comments. This work was supported by NIH grants (AG023695, NS048254, ES015317 and ES016731-0002) and a Michael J. Fox Foundation grant to Z. Mao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixu Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Yang, Q. & Mao, Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell. Mol. Life Sci. 68, 749–763 (2011). https://doi.org/10.1007/s00018-010-0565-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0565-6

Keywords

Navigation