Skip to main content
Log in

Using artificial systems to explore the ecology and evolution of symbioses

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The web of life is weaved from diverse symbiotic interactions between species. Symbioses vary from antagonistic interactions such as competition and predation to beneficial interactions such as mutualism. What are the bases for the origin and persistence of symbiosis? What affects the ecology and evolution of symbioses? How do symbiotic interactions generate ecological patterns? How do symbiotic partners evolve and coevolve? Many of these questions are difficult to address in natural systems. Artificial systems, from abstract to living, have been constructed to capture essential features of natural symbioses and to address these key questions. With reduced complexity and increased controllability, artificial systems can serve as useful models for natural systems. We review how artificial systems have contributed to our understanding of symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilkinson D (2001) At cross purposes. Nature 412:485

    PubMed  CAS  Google Scholar 

  2. Boucher D (1985) In: Boucher (D) (ed) The biology of mutualism: ecology and evolution. Oxford University Press, New York

  3. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922

    PubMed  CAS  Google Scholar 

  4. Neutel A, Heesterbeek J, van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, de Ruiter P (2007) Reconciling complexity with stability in naturally assembling food webs. Nature 449:599–602

    PubMed  CAS  Google Scholar 

  5. Tilman D, Kareiva P (1997) Spatial ecology. Princeton University Press, Princeton

    Google Scholar 

  6. Nowak M, Tarnita C, Antal T (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc Lond B Biol Sci 365:19–30

    PubMed  Google Scholar 

  7. Levin S (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Google Scholar 

  8. Thompson J (2009) The coevolving web of life. Am Nat 173:125–140

    PubMed  Google Scholar 

  9. Murray JD (2007) Mathematical biology I: an introduction (interdisciplinary applied mathematics), 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Klauß T, Böhme AV (2008) Modelling and simulation by stochastic interacting particle systems. In: Mathematical modeling of biological systems, vol II, pp 353–367

  11. Nowak M, May R (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    Google Scholar 

  12. Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  13. Ray T (1991) Evolution and optimization of digital organisms. In: Billingsley KR (ed) Scientific excellence in supercomputing: the IBM 1990 contest prize papers. The Baldwin Press, The University of Georgia, Athens, pp. 489–531

  14. Ofria C, Wilke C (2004) Avida: a software platform for research in computational evolutionary biology. Artif Life 10:191–229

    PubMed  Google Scholar 

  15. Yedid G, Ofria CA, Lenski RE (2009) Selective press extinctions, but not random pulse extinctions, cause delayed ecological recovery in communities of digital organisms. Am Nat 173:E139–E154

    PubMed  Google Scholar 

  16. Wootton JT (2001) Local interactions predict large-scale pattern in empirically derived cellular automata. Nature 413:841–844

    PubMed  CAS  Google Scholar 

  17. Lenski R, Ofria C, Pennock R, Adami C (2003) The evolutionary origin of complex features. Nature 423:139–144

    PubMed  CAS  Google Scholar 

  18. Adami C, Ofria C, Collier T (2000) Evolution of biological complexity. Proc Natl Acad Sci USA 97:4463–4468

    PubMed  CAS  Google Scholar 

  19. Polis G, Strong D (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Google Scholar 

  20. Gause GF (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Google Scholar 

  21. Turner P, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398:441–443

    PubMed  CAS  Google Scholar 

  22. Bull JJ, Millstein J, Orcutt J, Wichman HA (2006) Evolutionary feedback mediated through population density, illustrated with viruses in chemostats. Am Nat 167:E39–E51

    PubMed  CAS  Google Scholar 

  23. Buchsbaum R, Buchsbaum M (1934) An artificial symbiosis. Science 80:408–409

    PubMed  CAS  Google Scholar 

  24. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    PubMed  CAS  Google Scholar 

  25. Weber W, Daoud-El Baba M, Fussenegger M (2007) Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc Natl Acad Sci USA 104:10435–10440

    PubMed  CAS  Google Scholar 

  26. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol 4:187

    PubMed  Google Scholar 

  27. Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  28. Dale J, Park S (2010) Molecular genetics of bacteria. Wiley, New York

    Google Scholar 

  29. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Academic Press, London

    Google Scholar 

  30. Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS (2009) Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci USA 106:12477–12482

    PubMed  CAS  Google Scholar 

  31. Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261

    PubMed  CAS  Google Scholar 

  32. Backhed F, Ley R, Sonnenburg J, Peterson D, Gordon J (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    PubMed  Google Scholar 

  33. Warnecke F et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    PubMed  CAS  Google Scholar 

  34. Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci Biotechnol Biochem 73:2561–2567

    PubMed  CAS  Google Scholar 

  35. Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    PubMed  CAS  Google Scholar 

  36. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24:2603–2614

    PubMed  CAS  Google Scholar 

  37. Hosoda K, Suzuki S, Yamauchi Y, Shiroguchi Y, Kashiwagi A, Ono N, Mori K, Yomo T (2011) Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS ONE 6:e17105

  38. Shou W, Ram S, Vilar J (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci USA 104:1877–1882

    PubMed  CAS  Google Scholar 

  39. Harcombe W (2010) Novel cooperation experimentally evolved between species. Evolution 64:2166–2172

    PubMed  Google Scholar 

  40. Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Philos Trans R Soc Lond B Biol Sci 364:1483–1489

    PubMed  CAS  Google Scholar 

  41. Walter A, Lambrecht SC (2004) Biosphere 2 Center as a unique tool for environmental studies. J Environ Monit 6:267–277

    PubMed  CAS  Google Scholar 

  42. Cohen J, Tilman D (1996) Ecology—Biosphere 2 and biodiversity: the lessons so far. Science 274:1150–1151

    PubMed  CAS  Google Scholar 

  43. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906

    PubMed  CAS  Google Scholar 

  44. Weinreich D, Watson R, Chao L (2005) Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174

    PubMed  CAS  Google Scholar 

  45. Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–114

    PubMed  CAS  Google Scholar 

  46. Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

  47. Pallen MJ, Matzke NJ (2006) From the origin of species to the origin of bacterial flagella. Nat Rev Microbiol 4:784–790

    PubMed  CAS  Google Scholar 

  48. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    PubMed  Google Scholar 

  49. Jessup C, Kassen R, Forde S, Kerr B, Buckling A, Rainey P, Bohannan B (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    PubMed  Google Scholar 

  50. Callaway R, Cipollini D, Barto K, Thelen G, Hallett S, Prati D, Stinson K, Klironomos J (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055

    PubMed  Google Scholar 

  51. Jeon K, Jeon M (1976) Endosymbiosis in amebas—recently established endosymbionts have become required cytoplasmic components. J Cell Physiol 89:337–344

    PubMed  CAS  Google Scholar 

  52. Nakajima T, Sano A, Matsuoka H (2009) Auto-/heterotrophic endosymbiosis evolves in a mature stage of ecosystem development in a microcosm composed of an alga, a bacterium and a ciliate. BioSystems 96:127–135

    PubMed  Google Scholar 

  53. Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137:903–917

    PubMed  CAS  Google Scholar 

  54. Rozen DE, Lenski RE (2000) Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am Nat 155:24–35

    PubMed  Google Scholar 

  55. Maharjan R, Seeto S, Notley-McRobb L, Ferenci T (2006) Clonal adaptive radiation in a constant environment. Science 313:514–517

    PubMed  CAS  Google Scholar 

  56. MacLean R, Gudelj I (2006) Resource competition and social conflict in experimental populations of yeast. Nature 441:498–501

    PubMed  CAS  Google Scholar 

  57. Le Gac M, Brazas M, Bertrand M, Tyerman J, Spencer C, Hancock R, Doebeli M (2008) Metabolic changes associated with adaptive diversification in Escherichia coli. Genetics 178:1049–1060

    PubMed  CAS  Google Scholar 

  58. Treves DS, Manning S, Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15:789–797

    PubMed  CAS  Google Scholar 

  59. Chow S, Wilke C, Ofria C, Lenski R, Adami C (2004) Adaptive radiation from resource competition in digital organisms. Science 305:84–86

    PubMed  CAS  Google Scholar 

  60. Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R (2008) Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319:192–195

    PubMed  CAS  Google Scholar 

  61. Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    PubMed  CAS  Google Scholar 

  62. Ronsted N, Weiblen G, Cook J, Salamin N, Machado C, Savolainen V (2005) 60 million years of co-divergence in the fig-wasp symbiosis. Proc R Soc B Biol Sci 272:2593–2599

    Google Scholar 

  63. Gómez JM, Verdú M, Perfectti F (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–921

    PubMed  Google Scholar 

  64. Sachs J, Mueller U, Wilcox T, Bull J (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    PubMed  Google Scholar 

  65. Nowak M (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    PubMed  CAS  Google Scholar 

  66. Hamilton W (1964) The genetical evolution of social behavior. I. J Theor Biol 7:1–16

    PubMed  CAS  Google Scholar 

  67. Trivers R (1971) Evolution of reciprocal altruism. Q Rev Biol 46:35–57

    Google Scholar 

  68. Hillesland KL, Stahl DA (2010) Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc Natl Acad Sci USA 107:2124–2129

    PubMed  CAS  Google Scholar 

  69. Scholten JC, Culley DE, Brockman FJ, Wu G, Zhang W (2007) Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun 352:48–54

    PubMed  CAS  Google Scholar 

  70. Frank SA (1995) The origin of synergistic symbiosis. J Theor Biol 176:403–410

    PubMed  CAS  Google Scholar 

  71. Axelrod R, Hamilton W (1981) The evolution of cooperation. Science 211:1390–1396

    PubMed  CAS  Google Scholar 

  72. Bull J, Molineux I, Rice W (1991) Selection of benevolence in a host–parasite system. Evolution 45:875–882

    Google Scholar 

  73. Sachs JL, Wilcox TP (2006) A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc Biol Sci 273:425–429

    PubMed  Google Scholar 

  74. Sachs J, Bull J (2005) Experimental evolution of conflict mediation between genomes. Proc Natl Acad Sci USA 102:390–395

    PubMed  CAS  Google Scholar 

  75. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    PubMed  CAS  Google Scholar 

  76. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    PubMed  CAS  Google Scholar 

  77. Ng W, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    PubMed  CAS  Google Scholar 

  78. Czárán T, Hoekstra R (2009) Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLoS ONE 4:e6655

    Google Scholar 

  79. Floreano D, Mitri S, Magnenat S, Keller L (2007) Evolutionary conditions for the emergence of communication in robots. Curr Biol 17:514–519

    PubMed  CAS  Google Scholar 

  80. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    PubMed  CAS  Google Scholar 

  81. Brockhurst MA, Hochberg ME, Bell T, Buckling A (2006) Character displacement promotes cooperation in bacterial biofilms. Curr Biol 16:2030–2034

    PubMed  CAS  Google Scholar 

  82. Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284

    Google Scholar 

  83. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    PubMed  CAS  Google Scholar 

  84. Kerr B, Neuhauser C, Bohannan B, Dean A (2006) Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons’. Nature 442:75–78

    PubMed  CAS  Google Scholar 

  85. Eshelman CM, Vouk R, Stewart JL, Halsne E, Lindsey HA, Schneider S, Gualu M, Dean AM, Kerr B (2010) Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Philos Trans R Soc Lond B Biol Sci 365:2503–2513

    PubMed  CAS  Google Scholar 

  86. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    PubMed  CAS  Google Scholar 

  87. Cornell HV, Lawton J (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities—a theoretical perspective. J Anim Ecol 61:1–12

    Google Scholar 

  88. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Google Scholar 

  89. Pacala SW, Hassell MP, May RM (1990) Host–parasitoid associations in patchy environments. Nature 344:150–153

    PubMed  CAS  Google Scholar 

  90. Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258

    Google Scholar 

  91. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    PubMed  CAS  Google Scholar 

  92. Stoll P, Prati D (2001) Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology 82:319–327

    Google Scholar 

  93. Ellner SP et al (2001) Habitat structure and population persistence in an experimental community. Nature 412:538–543

    PubMed  CAS  Google Scholar 

  94. Huffaker C (1958) Experimental studies on predation dispersion factors and predator–prey oscillations. Hilgardia 27:343–383

    Google Scholar 

  95. Forde SE, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host-parasitoid interaction. Nature 431:841–844

    PubMed  CAS  Google Scholar 

  96. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA 105:18188–18193

    PubMed  CAS  Google Scholar 

  97. Sole RV, Bascompte J (2006) Self-organization in complex ecosystems. Princeton University Press, Princeton

    Google Scholar 

  98. Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436

    Google Scholar 

  99. May RM, McLean AR (2007) Theoretical ecology: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  100. Bascompte J, Solé RV (1995) Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol Evol 10:361–366

    PubMed  CAS  Google Scholar 

  101. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72

    Google Scholar 

  102. Nakamasu A, Takahashi G, Kanbe A, Kondo S (2009) Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc Natl Acad Sci USA 106:8429–8434

    PubMed  CAS  Google Scholar 

  103. Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175

    PubMed  Google Scholar 

  104. Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    PubMed  CAS  Google Scholar 

  105. Werner T, Koshikawa S, Williams TM, Carroll SB (2010) Generation of a novel wing colour pattern by the Wingless morphogen. Nature 464:1143–1148

    PubMed  CAS  Google Scholar 

  106. You L, Cox R, Weiss R, Arnold F (2004) Programmed population control by cell–cell communication and regulated killing. Nature 428:868–871

    PubMed  CAS  Google Scholar 

  107. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134

    PubMed  CAS  Google Scholar 

  108. Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104:17300–17304

    PubMed  CAS  Google Scholar 

  109. Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5:929–935

    PubMed  CAS  Google Scholar 

  110. Chuang JS, Rivoire O, Leibler S (2009) Simpson’s paradox in a synthetic microbial system. Science 323:272–275

    PubMed  CAS  Google Scholar 

  111. Gore J, Youk H, van Oudenaarden A (2009) Snowdrift game dynamics and facultative cheating in yeast. Nature 459:253–256

    Google Scholar 

  112. Turchin P, Oksanen L, Ekerholm P, Oksanen T, Henttonen H (2000) Are lemmings prey or predators? Nature 405:562–565

    PubMed  CAS  Google Scholar 

  113. Flyvbjerg H, Jobs E, Leibler S (1996) Kinetics of self-assembling microtubules: an “inverse problem” in biochemistry. Proc Natl Acad Sci USA 93:5975–5979

    PubMed  CAS  Google Scholar 

  114. Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray, London

  115. Clark MA, Moran NA, Baumann P, Wernegreen JJ (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:517–525

    PubMed  CAS  Google Scholar 

  116. Itino T, Davies S, Tada H, Hieda Y, Inoguchi M (2001) Cospeciation of ants and plants. Ecol Res 16:787–793

    Google Scholar 

  117. Noda S et al (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266

    PubMed  CAS  Google Scholar 

  118. Schluter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140:85–108

    PubMed  CAS  Google Scholar 

  119. Brodie E, Brodie E (1991) Evolutionary response of predators to dangerous prey—reduction of toxicity of newts and resistance of garter snakes in island populations. Evolution 45:221–224

    Google Scholar 

  120. Hafner MS, Nadler SA (1988) Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332:258–259

    PubMed  CAS  Google Scholar 

  121. Paterson AM, Wallis GP, Wallis LJ, Gray RD (2000) Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst Biol 49:383–399

    PubMed  CAS  Google Scholar 

  122. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    PubMed  Google Scholar 

  123. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    PubMed  CAS  Google Scholar 

  124. Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

    PubMed  CAS  Google Scholar 

  125. Travisano M, Mongold JA, Bennett AF, Lenski RE (1995) Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267:87–90

    PubMed  CAS  Google Scholar 

  126. Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D (2005) Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 169:523–532

    PubMed  CAS  Google Scholar 

  127. Bouma JE, Lenski RE (1988) Evolution of a bacteria/plasmid association. Nature 335:351–352

    PubMed  CAS  Google Scholar 

  128. Heineman RH, Bull JJ (2007) Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution 61:1695–1709

    PubMed  Google Scholar 

  129. Heineman RH, Springman R, Bull JJ (2008) Optimal foraging by bacteriophages through host avoidance. Am Nat 171:E149–E157

    PubMed  Google Scholar 

  130. Guyader S, Burch CL (2008) Optimal foraging predicts the ecology but not the evolution of host specialization in bacteriophages. PLoS ONE 3:e1946

    PubMed  Google Scholar 

  131. Hillesland K, Velicer G, Lenski R (2009) Experimental evolution of a microbial predator’s ability to find prey. Proc Biol Sci 276:459–467

    PubMed  Google Scholar 

  132. Stephens D, Krebs J (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  133. Perry G, Pianka E (1997) Animal foraging: past, present, and future. Ecol Evol 12:360–364

    CAS  Google Scholar 

  134. Werner E, Hall D (1974) Optimal foraging and the size selection of prey by the bluegill sunfish. Ecology 55:1042–1052

    Google Scholar 

  135. Thompson J (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  136. Schluter D (1994) Experimental evidence that competition promotes divergence in adaptive radiation. Science 266:798–801

    PubMed  CAS  Google Scholar 

  137. Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution 58:245–260

    PubMed  Google Scholar 

  138. Pfennig DW, Rice AM, Martin RA (2007) Field and experimental evidence for competition’s role in phenotypic divergence. Evolution 61:257–271

    PubMed  Google Scholar 

  139. Tyerman JG, Bertrand M, Spencer CC, Doebeli M (2008) Experimental demonstration of ecological character displacement. BMC Evol Biol 8:34

    PubMed  Google Scholar 

  140. Rundle HD, Vamosi SM, Schluter D (2003) Experimental test of predation’s effect on divergent selection during character displacement in sticklebacks. Proc Natl Acad Sci USA 100:14943–14948

    PubMed  CAS  Google Scholar 

  141. Nosil P, Crespi BJ (2006) Experimental evidence that predation promotes divergence in adaptive radiation. Proc Natl Acad Sci USA 103:9090–9095

    PubMed  CAS  Google Scholar 

  142. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci 269:931–936

    PubMed  Google Scholar 

  143. Buckling A, Rainey PB (2002) The role of parasites in sympatric and allopatric host diversification. Nature 420:496–499

    PubMed  CAS  Google Scholar 

  144. Paterson S et al (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278

    PubMed  CAS  Google Scholar 

  145. Schulte R, Makus C, Hasert B, Michiels N, Schulenburg H (2010) Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci USA 107:7359–7364

    PubMed  CAS  Google Scholar 

  146. Koskella B, Lively C (2009) Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution 63:2213–2221

    PubMed  Google Scholar 

  147. van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  148. Lenski R, Levin B (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    Google Scholar 

  149. Bohannan B, Lenski R (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    Google Scholar 

  150. Bergstrom C (2002) Group report: interspecific mutualism—puzzles and predictions. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. The MIT Press, Cambridge

    Google Scholar 

  151. Bergstrom CT, Lachmann M (2003) The Red King effect: when the slowest runner wins the coevolutionary race. Proc Natl Acad Sci USA 100:593–598

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the feedback from Ben Kerr, Justin Burton, Sri Ram, Kazufumi Hosoda, Jake Cooper, Barbara Bengtsson, and George Moore. Work in Shou group is supported by the W.M. Keck Foundation, the National Institutes of Health (Grant # 1 DP2 OD006498-01), and the National Science Foundation BEACON Science and Technology Center. Work by Hillesland was part of the US Department of Energy Genomics Sciences program: ENIGMA is a Scientific Focus Area Program supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Shou.

Additional information

B. Momeni, C.-C. Chen and K. L. Hillesland contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momeni, B., Chen, CC., Hillesland, K.L. et al. Using artificial systems to explore the ecology and evolution of symbioses. Cell. Mol. Life Sci. 68, 1353–1368 (2011). https://doi.org/10.1007/s00018-011-0649-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0649-y

Keywords

Navigation