Skip to main content

Advertisement

Log in

Alternative pathways for MHC class I presentation: a new function for autophagy

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Falk K, Rotzschke O, Stevanovic S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324):290–296

    Article  PubMed  CAS  Google Scholar 

  2. York IA, Rock KL (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 14:369–396

    Article  PubMed  CAS  Google Scholar 

  3. Brown JH, Jardetzky TS, Gorga JC et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432):33–39

    Article  PubMed  CAS  Google Scholar 

  4. Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL (1993) Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA 90(11):4942–4946

    Article  PubMed  CAS  Google Scholar 

  5. Kovacsovics-Bankowski M, Rock KL (1995) A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267(5195):243–246

    Article  PubMed  CAS  Google Scholar 

  6. Houde M, Bertholet S, Gagnon E et al (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425(6956):402–406

    Article  PubMed  CAS  Google Scholar 

  7. Ackerman AL, Kyritsis C, Tampe R, Cresswell P (2003) Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc Natl Acad Sci USA 100(22):12889–12894

    Article  PubMed  CAS  Google Scholar 

  8. Ackerman AL, Giodini A, Cresswell P (2006) A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25(4):607–617

    Article  PubMed  CAS  Google Scholar 

  9. Guermonprez P, Saveanu L, Kleijmeer M et al (2003) ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425(6956):397–402

    Article  PubMed  CAS  Google Scholar 

  10. Shen L, Sigal LJ, Boes M, Rock KL (2004) Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21(2):155–165

    Article  PubMed  CAS  Google Scholar 

  11. Bertholet S, Goldszmid R, Morrot A et al (2006) Leishmania antigens are presented to CD8 + T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo. J Immunol 177(6):3525–3533

    PubMed  CAS  Google Scholar 

  12. English L, Chemali M, Duron J et al. (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol

  13. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  14. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  15. Dean RT (1977) Lysosomes and membrane recycling. A hypothesis. Biochem J 168(3):603–605

    PubMed  CAS  Google Scholar 

  16. Mortimore GE, Hutson NJ, Surmacz CA (1983) Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci USA 80(8):2179–2183

    Article  PubMed  CAS  Google Scholar 

  17. Cuervo AM, Dice JF, Knecht E (1997) A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 272(9):5606–5615

    Article  PubMed  CAS  Google Scholar 

  18. Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246(4928):382–385

    Article  PubMed  CAS  Google Scholar 

  19. Cuervo AM, Dice JF (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113(Pt 24):4441–4450

    PubMed  CAS  Google Scholar 

  20. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  PubMed  CAS  Google Scholar 

  21. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    Article  PubMed  CAS  Google Scholar 

  22. Hailey DW, Rambold AS, Satpute-Krishnan P et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667

    Article  PubMed  CAS  Google Scholar 

  23. Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437

    Article  PubMed  CAS  Google Scholar 

  24. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    Article  PubMed  Google Scholar 

  25. Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701

    Article  PubMed  CAS  Google Scholar 

  26. Ravikumar B, Moreau K, Jahreiss L et al. (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol

  27. Juhasz G, Neufeld TP (2006) Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4(2):e36

    Article  PubMed  Google Scholar 

  28. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518

    Article  PubMed  CAS  Google Scholar 

  29. Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19(8):3290–3298

    Article  PubMed  CAS  Google Scholar 

  30. Nishida Y, Arakawa S, Fujitani K et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461(7264):654–658

    Article  PubMed  CAS  Google Scholar 

  31. Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120(2):159–162

    PubMed  CAS  Google Scholar 

  32. Schmid D, Münz C (2007) Innate and adaptive immunity through autophagy. Immunity 27(1):11–21

    Article  PubMed  CAS  Google Scholar 

  33. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777

    Article  PubMed  CAS  Google Scholar 

  34. Crotzer VL, Blum JS (2009) Autophagy and its role in MHC-mediated antigen presentation. J Immunol 182(6):3335–3341

    Article  PubMed  CAS  Google Scholar 

  35. Jacobson S, Sekaly RP, Jacobson CL et al (1989) HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63(4):1756–1762

    PubMed  CAS  Google Scholar 

  36. Rudensky A, Preston-Hurlburt P, Hong SC et al (1991) Sequence analysis of peptides bound to MHC class II molecules. Nature 353(6345):622–627

    Article  PubMed  CAS  Google Scholar 

  37. Chicz RM, Urban RG, Gorga JC et al (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178(1):27–47

    Article  PubMed  CAS  Google Scholar 

  38. Dengjel J, Schoor O, Fischer R et al (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102(22):7922–7927

    Article  PubMed  CAS  Google Scholar 

  39. Dongre AR, Kovats S, deRoos P et al (2001) In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. Eur J Immunol 31(5):1485–1494

    Article  PubMed  CAS  Google Scholar 

  40. Nimmerjahn F, Milosevic S, Behrends U et al (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33(5):1250–1259

    Article  PubMed  CAS  Google Scholar 

  41. Dorfel D, Appel S, Grunebach F et al (2005) Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 105(8):3199–3205

    Article  PubMed  Google Scholar 

  42. Zhou D, Li P, Lin Y et al (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22(5):571–581

    Article  PubMed  CAS  Google Scholar 

  43. Townsend A, Ohlen C, Bastin J et al (1989) Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340(6233):443–448

    Article  PubMed  CAS  Google Scholar 

  44. Esquivel F, Yewdell J, Bennink J (1992) RMA/S cells present endogenously synthesized cytosolic proteins to class I-restricted cytotoxic T lymphocytes. J Exp Med 175(1):163–168

    Article  PubMed  CAS  Google Scholar 

  45. Hosken NA, Bevan MJ (1992) An endogenous antigenic peptide bypasses the class I antigen presentation defect in RMA-S. J Exp Med 175(3):719–729

    Article  PubMed  CAS  Google Scholar 

  46. Sijts AJ, De Bruijn ML, Nieland JD et al (1992) Cytotoxic T lymphocytes against the antigen-processing-defective RMA-S tumor cell line. Eur J Immunol 22(6):1639–1642

    Article  PubMed  CAS  Google Scholar 

  47. Gil-Torregrosa BC, Raul Castano A, Del Val M (1998) Major histocompatibility complex class I viral antigen processing in the secretory pathway defined by the trans-Golgi network protease furin. J Exp Med 188(6):1105–1116

    Article  PubMed  CAS  Google Scholar 

  48. Tiwari N, Garbi N, Reinheckel T et al (2007) A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J Immunol 178(12):7932–7942

    PubMed  CAS  Google Scholar 

  49. Pfeifer JD, Wick MJ, Roberts RL et al (1993) Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361(6410):359–362

    Article  PubMed  CAS  Google Scholar 

  50. Li B, Lei Z, Lichty BD et al. (2009) Autophagy facilitates major histocompatibility complex class I expression induced by IFN-gamma in B16 melanoma cells. Cancer Immunol Immunother

  51. Broberg EK, Peltoniemi J, Nygardas M et al (2004) Spread and replication of and immune response to gamma134.5-negative herpes simplex virus type 1 vectors in BALB/c mice. J Virol 78(23):13139–13152

    Article  PubMed  CAS  Google Scholar 

  52. Jagannath C, Lindsey DR, Dhandayuthapani S et al (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15(3):267–276

    Article  PubMed  CAS  Google Scholar 

  53. Fu X, Tao L, Zhang X (2010) A short polypeptide from HSV-2 ICP10 gene can induce antigen aggregation and autophagosomal degradation for enhanced immune presentation. Hum Gene Ther

  54. Schirmbeck R, Bohm W, Reimann J (1997) Stress protein (hsp73)-mediated, TAP-independent processing of endogenous, truncated SV40 large T antigen for Db-restricted peptide presentation. Eur J Immunol 27(8):2016–2023

    Article  PubMed  CAS  Google Scholar 

  55. Schirmbeck R, Reimann J (1994) Peptide transporter-independent, stress protein-mediated endosomal processing of endogenous protein antigens for major histocompatibility complex class I presentation. Eur J Immunol 24(7):1478–1486

    Article  PubMed  CAS  Google Scholar 

  56. Mahmutefendic H, Blagojevic G, Kucic N, Lucin P (2007) Constitutive internalization of murine MHC class I molecules. J Cell Physiol 210(2):445–455

    Article  PubMed  CAS  Google Scholar 

  57. Gromme M, Uytdehaag FG, Janssen H et al (1999) Recycling MHC class I molecules and endosomal peptide loading. Proc Natl Acad Sci USA 96(18):10326–10331

    Article  PubMed  CAS  Google Scholar 

  58. Kleijmeer MJ, Escola JM, UytdeHaag FG et al (2001) Antigen loading of MHC class I molecules in the endocytic tract. Traffic 2(2):124–137

    Article  PubMed  CAS  Google Scholar 

  59. Schirmbeck R, Wild J, Reimann J (1998) Similar as well as distinct MHC class I-binding peptides are generated by exogenous and endogenous processing of hepatitis B virus surface antigen. Eur J Immunol 28(12):4149–4161

    Article  PubMed  CAS  Google Scholar 

  60. Leung CS, Haigh TA, Mackay LK et al (2010) Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc Natl Acad Sci USA 107(5):2165–2170

    Article  PubMed  CAS  Google Scholar 

  61. Zhou X, Glas R, Momburg F et al (1993) TAP2-defective RMA-S cells present Sendai virus antigen to cytotoxic T lymphocytes. Eur J Immunol 23(8):1796–1801

    Article  PubMed  CAS  Google Scholar 

  62. Paludan C, Schmid D, Landthaler M et al (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307(5709):593–596

    Article  PubMed  CAS  Google Scholar 

  63. Levitskaya J, Coram M, Levitsky V et al (1995) Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature 375(6533):685–688

    Article  PubMed  CAS  Google Scholar 

  64. Dantuma NP, Heessen S, Lindsten K et al (2000) Inhibition of proteasomal degradation by the gly-Ala repeat of Epstein–Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA 97(15):8381–8385

    Article  PubMed  CAS  Google Scholar 

  65. Zaldumbide A, Ossevoort M, Wiertz EJ, Hoeben RC (2007) In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol Immunol 44(6):1352–1360

    Article  PubMed  CAS  Google Scholar 

  66. Kwun HJ, da Silva SR, Shah IM et al (2007) Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81(15):8225–8235

    Article  PubMed  CAS  Google Scholar 

  67. Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9(7):503–513

    Article  PubMed  CAS  Google Scholar 

  68. Donaldson JG, Williams DB (2009) Intracellular assembly and trafficking of MHC class I molecules. Traffic 10(12):1745–1752

    Article  PubMed  CAS  Google Scholar 

  69. Loch S, Tampe R (2005) Viral evasion of the MHC class I antigen-processing machinery. Pflugers Arch 451(3):409–417

    Article  PubMed  CAS  Google Scholar 

  70. Griffin BD, Verweij MC, Wiertz EJ (2010) Herpesviruses and immunity: the art of evasion. Vet Microbiol 143(1):89–100

    Article  PubMed  CAS  Google Scholar 

  71. Schaefer MR, Wonderlich ER, Roeth JF et al (2008) HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 4(8):e1000131

    Article  PubMed  Google Scholar 

  72. Roeth JF, Williams M, Kasper MR et al (2004) HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J Cell Biol 167(5):903–913

    Article  PubMed  CAS  Google Scholar 

  73. Reusch U, Muranyi W, Lucin P et al (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18(4):1081–1091

    Article  PubMed  CAS  Google Scholar 

  74. Uhl M, Kepp O, Jusforgues-Saklani H et al. (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8(+) T cells. Cell Death Differ

  75. Li Y, Wang LX, Yang G et al (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68(17):6889–6895

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc English.

Additional information

M. Chemali and K. Radtke contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemali, M., Radtke, K., Desjardins, M. et al. Alternative pathways for MHC class I presentation: a new function for autophagy. Cell. Mol. Life Sci. 68, 1533–1541 (2011). https://doi.org/10.1007/s00018-011-0660-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0660-3

Keywords

Navigation