Skip to main content

Advertisement

Log in

Chromosome instability and deregulated proliferation: an unavoidable duo

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The concept that aneuploidy is a characteristic of malignant cells has long been known; however, the idea that aneuploidy is an active contributor to tumorigenesis, as opposed to being an associated phenotype, is more recent in its evolution. At the same time, we are seeing the emergence of novel roles for tumor suppressor genes and oncogenes in genome stability. These include the adenomatous polyposis coli gene (APC), p53, the retinoblastoma susceptibility gene (RB1), and Ras. Originally, many of these genes were thought to be tumor suppressive or oncogenic solely because of their role in proliferative control. Because of the frequency with which they are disrupted in cancer, chromosome instability caused by their dysfunction may be more central to tumorigenesis than previously thought. Therefore, this review will highlight how the proper function of cell cycle regulatory genes contributes to the maintenance of genome stability, and how their mutation in cancer obligatorily connects proliferation and chromosome instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

CDK:

Cyclin dependent kinase

CIN:

Chromosome instability

DDR:

DNA damage response

LXCXE:

Leucine-any amino acid-cysteine-any amino acid-glutamate

MMTV:

Mouse mammary tumor virus promoter

OIS:

Oncogene induced senescence

PARP:

Poly ADP ribose polymerase

RB:

Retinoblastoma

S-CIN:

Segmental chromosome instability

W-CIN:

Whole chromosome instability

References

  1. Grilley M, Holmes J, Yashar B, Modrich P (1990) Mechanisms of DNA-mismatch correction. Mutat Res 236:253–267

    PubMed  CAS  Google Scholar 

  2. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    PubMed  CAS  Google Scholar 

  3. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    PubMed  CAS  Google Scholar 

  4. Sancar A (1996) DNA excision repair. Annu Rev Biochem 65:43–81

    PubMed  CAS  Google Scholar 

  5. Wood RD (1997) Nucleotide excision repair in mammalian cells. J Biol Chem 272:23465–23468

    PubMed  CAS  Google Scholar 

  6. Batty DP, Wood RD (2000) Damage recognition in nucleotide excision repair of DNA. Gene 241:193–204

    PubMed  CAS  Google Scholar 

  7. Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR (2008) Defining ‘chromosomal instability’. Trends Genet 24:64–69

    PubMed  CAS  Google Scholar 

  8. Aguilera A, Gomez-Gonzalez B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9:204–217

    PubMed  CAS  Google Scholar 

  9. Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Natl Rev Mol Cell Biol 10:478–487

    CAS  Google Scholar 

  10. Tanaka K, Hirota T (2009) Chromosome segregation machinery and cancer. Cancer Sci 100:1158–1165

    PubMed  CAS  Google Scholar 

  11. Schvartzman JM, Sotillo R, Benezra R (2010) Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10:102–115

    PubMed  CAS  Google Scholar 

  12. Boveri T (1912) Anton Dohbn. Science 36:453–468

    PubMed  CAS  Google Scholar 

  13. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Suppl 1):1–84

    Google Scholar 

  14. SA A, BC H, SS J (2009) Application of UV-spectrophotometric methods for estimation of tenofovir disoproxil fumarate in tablets. Pak J Pharm Sci 22:27–29

    Google Scholar 

  15. Makino S (1952) Cytological studies on cancer. III. The characteristics and individuality of chromosomes in tumor cells of the Yoshida sarcoma which contribute to the growth of the tumor. Gan No Rinsho 43:17–34

    CAS  Google Scholar 

  16. Makino S, Nakahara H (1952) Observations on cell division in living tumor cells of ascites-sarcomas of rats. Gan No Rinsho 43:302

    CAS  Google Scholar 

  17. Hauschka TS, Levan A (1958) Cytologic and functional characterization of single cell clones isolated from the Krebs-2 and Ehrlich ascites tumors. J Natl Cancer Inst 21:77–135

    PubMed  CAS  Google Scholar 

  18. Hauschka TS (1958) Correlation of chromosomal and physiologic changes in tumors. J Cell Physiol Suppl 52:197–233

    PubMed  CAS  Google Scholar 

  19. Hauschka TS (1953) Cell population studies on mouse ascites tumors. Trans N Y Acad Sci 16:64–73

    PubMed  CAS  Google Scholar 

  20. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  21. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  22. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    PubMed  CAS  Google Scholar 

  23. Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Natl Rev Mol Cell Biol 11:138–148

    CAS  Google Scholar 

  24. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM (2006) The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127:539–552

    PubMed  CAS  Google Scholar 

  25. Stolz A, Ertych N, Kienitz A, Vogel C, Schneider V, Fritz B, Jacob R, Dittmar G, Weichert W, Petersen I et al (2010) The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol 12:492–499

    PubMed  CAS  Google Scholar 

  26. Choi E, Lee H (2008) Chromosome damage in mitosis induces BubR1 activation and prometaphase arrest. FEBS Lett 582:1700–1706

    PubMed  CAS  Google Scholar 

  27. Elowe S, Dulla K, Uldschmid A, Li X, Dou Z, Nigg EA (2010) Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci 123:84–94

    PubMed  CAS  Google Scholar 

  28. Wei L, Liang XW, Zhang QH, Li M, Yuan J, Li S, Sun SC, Ouyang YC, Schatten H, Sun QY (2010) BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte. Cell Cycle 9:1112–1121

    PubMed  CAS  Google Scholar 

  29. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    PubMed  CAS  Google Scholar 

  30. Su LK, Vogelstein B, Kinzler KW (1993) Association of the APC tumor suppressor protein with catenins. Science 262:1734–1737

    PubMed  CAS  Google Scholar 

  31. Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P (1993) Association of the APC gene product with beta-catenin. Science 262:1731–1734

    PubMed  CAS  Google Scholar 

  32. Hinck L, Nathke IS, Papkoff J, Nelson WJ (1994) Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 125:1327–1340

    PubMed  CAS  Google Scholar 

  33. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  34. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347

    PubMed  CAS  Google Scholar 

  35. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    PubMed  CAS  Google Scholar 

  36. Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH (1991) The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67:293–302

    PubMed  CAS  Google Scholar 

  37. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P et al (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328:614–616

    PubMed  CAS  Google Scholar 

  38. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665

    PubMed  CAS  Google Scholar 

  39. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    PubMed  CAS  Google Scholar 

  40. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    PubMed  CAS  Google Scholar 

  41. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    PubMed  CAS  Google Scholar 

  42. ten Berge D, Brugmann SA, Helms JA, Nusse R (2008) Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135:3247–3257

    PubMed  CAS  Google Scholar 

  43. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    PubMed  CAS  Google Scholar 

  44. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    PubMed  CAS  Google Scholar 

  45. Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61:8664–8667

    PubMed  CAS  Google Scholar 

  46. Rockman SP, Currie SA, Ciavarella M, Vincan E, Dow C, Thomas RJ, Phillips WA (2001) Id2 is a target of the beta-catenin/T cell factor pathway in colon carcinoma. J Biol Chem 276:45113–45119

    PubMed  CAS  Google Scholar 

  47. Willert J, Epping M, Pollack JR, Brown PO, Nusse R (2002) A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2:8

    PubMed  Google Scholar 

  48. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS (2001) A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 3:429–432

    PubMed  CAS  Google Scholar 

  49. Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler KW (1995) APC binds to the novel protein EB1. Cancer Res 55:2972–2977

    PubMed  CAS  Google Scholar 

  50. Tirnauer JS, Bierer BE (2000) EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 149:761–766

    PubMed  CAS  Google Scholar 

  51. Draviam VM, Shapiro I, Aldridge B, Sorger PK (2006) Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J 25:2814–2827

    PubMed  CAS  Google Scholar 

  52. Green RA, Kaplan KB (2003) Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 163:949–961

    PubMed  CAS  Google Scholar 

  53. Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16:4609–4622

    PubMed  CAS  Google Scholar 

  54. Zhang J, Ahmad S, Mao Y (2007) BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment. J Cell Biol 178:773–784

    PubMed  CAS  Google Scholar 

  55. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942

    PubMed  CAS  Google Scholar 

  56. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670

    PubMed  CAS  Google Scholar 

  57. Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA (1995) Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 55:1146–1151

    PubMed  CAS  Google Scholar 

  58. Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W et al (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13:1309–1321

    PubMed  CAS  Google Scholar 

  59. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH et al (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3:433–438

    PubMed  CAS  Google Scholar 

  60. Caldwell CM, Green RA, Kaplan KB (2007) APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol 178:1109–1120

    PubMed  CAS  Google Scholar 

  61. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92:4482–4486

    PubMed  CAS  Google Scholar 

  62. Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936

    PubMed  CAS  Google Scholar 

  63. Zhang J, Neisa R, Mao Y (2009) Oncogenic adenomatous polyposis coli mutants impair the mitotic checkpoint through direct interaction with Mad2. Mol Biol Cell 20:2381–2388

    PubMed  CAS  Google Scholar 

  64. Rao CV, Yang YM, Swamy MV, Liu T, Fang Y, Mahmood R, Jhanwar-Uniyal M, Dai W (2005) Colonic tumorigenesis in BubR1±ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proc Natl Acad Sci USA 102:4365–4370

    PubMed  CAS  Google Scholar 

  65. Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang YM, Xu M, Rao CV (2004) Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 64:440–445

    PubMed  CAS  Google Scholar 

  66. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P et al (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749

    PubMed  CAS  Google Scholar 

  67. Kress M, May E, Cassingena R, May P (1979) Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472–483

    PubMed  CAS  Google Scholar 

  68. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    PubMed  CAS  Google Scholar 

  69. Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    PubMed  CAS  Google Scholar 

  70. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    PubMed  CAS  Google Scholar 

  71. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348:747–749

    PubMed  CAS  Google Scholar 

  72. Varley JM, McGown G, Thorncroft M, Santibanez-Koref MF, Kelsey AM, Tricker KJ, Evans DG, Birch JM (1997) Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res 57:3245–3252

    PubMed  CAS  Google Scholar 

  73. Santibanez-Koref MF, Birch JM, Hartley AL, Jones PH, Craft AW, Eden T, Crowther D, Kelsey AM, Harris M (1991) p53 germline mutations in Li-Fraumeni syndrome. Lancet 338:1490–1491

    PubMed  CAS  Google Scholar 

  74. Carson DA, Lois A (1995) Cancer progression and p53. Lancet 346:1009–1011

    PubMed  CAS  Google Scholar 

  75. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    PubMed  CAS  Google Scholar 

  76. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    PubMed  CAS  Google Scholar 

  77. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    PubMed  CAS  Google Scholar 

  78. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    PubMed  CAS  Google Scholar 

  79. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    PubMed  CAS  Google Scholar 

  80. Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125

    PubMed  CAS  Google Scholar 

  81. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1:20–26

    PubMed  CAS  Google Scholar 

  82. Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT, Lane DP (2000) An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19:2312–2323

    PubMed  CAS  Google Scholar 

  83. Hauschka T, Saxe LH Jr, Blair M (1947) Trypanosoma cruzi in the treatment of mouse tumors. J Natl Cancer Inst 7:189–197

    PubMed  CAS  Google Scholar 

  84. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    PubMed  CAS  Google Scholar 

  85. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    PubMed  CAS  Google Scholar 

  86. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    PubMed  CAS  Google Scholar 

  87. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023

    PubMed  CAS  Google Scholar 

  88. Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578

    PubMed  CAS  Google Scholar 

  89. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    PubMed  CAS  Google Scholar 

  90. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    PubMed  CAS  Google Scholar 

  91. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328

    PubMed  CAS  Google Scholar 

  92. Bischoff FZ, Yim SO, Pathak S, Grant G, Siciliano MJ, Giovanella BC, Strong LC, Tainsky MA (1990) Spontaneous abnormalities in normal fibroblasts from patients with Li-Fraumeni cancer syndrome: aneuploidy and immortalization. Cancer Res 50:7979–7984

    PubMed  CAS  Google Scholar 

  93. Tainsky MA, Bischoff FZ, Strong LC (1995) Genomic instability due to germline p53 mutations drives preneoplastic progression toward cancer in human cells. Cancer Metastasis Rev 14:43–48

    PubMed  CAS  Google Scholar 

  94. Boyle JM, Mitchell EL, Greaves MJ, Roberts SA, Tricker K, Burt E, Varley JM, Birch JM, Scott D (1998) Chromosome instability is a predominant trait of fibroblasts from Li-Fraumeni families. Br J Cancer 77:2181–2192

    PubMed  CAS  Google Scholar 

  95. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935

    PubMed  CAS  Google Scholar 

  96. Campomenosi P, Assereto P, Bogliolo M, Fronza G, Abbondandolo A, Capasso A, Bellomo PF, Monaco R, Rapallo A, Sciutto A et al (1998) p53 mutations and DNA ploidy in colorectal adenocarcinomas. Anal Cell Pathol 17:1–12

    PubMed  CAS  Google Scholar 

  97. Blount PL, Galipeau PC, Sanchez CA, Neshat K, Levine DS, Yin J, Suzuki H, Abraham JM, Meltzer SJ, Reid BJ (1994) 17p allelic losses in diploid cells of patients with Barrett’s esophagus who develop aneuploidy. Cancer Res 54:2292–2295

    PubMed  CAS  Google Scholar 

  98. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381

    PubMed  CAS  Google Scholar 

  99. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    PubMed  CAS  Google Scholar 

  100. Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS, Rabinovitch PS, Reid BJ (1996) 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 93:7081–7084

    PubMed  CAS  Google Scholar 

  101. Gatz SA, Wiesmuller L (2006) p53 in recombination and repair. Cell Death Differ 13:1003–1016

    PubMed  CAS  Google Scholar 

  102. Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG (1994) p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91:413–417

    PubMed  CAS  Google Scholar 

  103. Lee S, Elenbaas B, Levine A, Griffith J (1995) p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81:1013–1020

    PubMed  CAS  Google Scholar 

  104. Jean D, Gendron D, Delbecchi L, Bourgaux P (1997) p53-mediated DNA renaturation can mimic strand exchange. Nucleic Acids Res 25:4004–4012

    PubMed  CAS  Google Scholar 

  105. Jayaraman J, Prives C (1995) Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81:1021–1029

    PubMed  CAS  Google Scholar 

  106. Saintigny Y, Lopez BS (2002) Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene 21:488–492

    PubMed  CAS  Google Scholar 

  107. Janz C, Wiesmuller L (2002) Wild-type p53 inhibits replication-associated homologous recombination. Oncogene 21:5929–5933

    PubMed  CAS  Google Scholar 

  108. Elliott B, Jasin M (2001) Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 21:2671–2682

    PubMed  CAS  Google Scholar 

  109. Lee S, Cavallo L, Griffith J (1997) Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 272:7532–7539

    PubMed  CAS  Google Scholar 

  110. Dudenhoffer C, Kurth M, Janus F, Deppert W, Wiesmuller L (1999) Dissociation of the recombination control and the sequence-specific transactivation function of P53. Oncogene 18:5773–5784

    PubMed  CAS  Google Scholar 

  111. Janz C, Susse S, Wiesmuller L (2002) p53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation. Oncogene 21:2130–2140

    PubMed  CAS  Google Scholar 

  112. Kumari A, Schultz N, Helleday T (2004) p53 protects from replication-associated DNA double-strand breaks in mammalian cells. Oncogene 23:2324–2329

    PubMed  CAS  Google Scholar 

  113. Squires S, Coates JA, Goldberg M, Toji LH, Jackson SP, Clarke DJ, Johnson RT (2004) p53 prevents the accumulation of double-strand DNA breaks at stalled-replication forks induced by UV in human cells. Cell Cycle 3:1543–1557

    PubMed  CAS  Google Scholar 

  114. Dahm-Daphi J, Hubbe P, Horvath F, El-Awady RA, Bouffard KE, Powell SN, Willers H (2005) Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene 24:1663–1672

    PubMed  CAS  Google Scholar 

  115. Lin Y, Waldman BC, Waldman AS (2003) Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-alpha, a chemical inhibitor of p53. DNA Repair (Amst) 2:1–11

    CAS  Google Scholar 

  116. Morris SM (2002) A role for p53 in the frequency and mechanism of mutation. Mutat Res 511:45–62

    PubMed  CAS  Google Scholar 

  117. Sengupta S, Linke SP, Pedeux R, Yang Q, Farnsworth J, Garfield SH, Valerie K, Shay JW, Ellis NA, Wasylyk B et al (2003) BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 22:1210–1222

    PubMed  CAS  Google Scholar 

  118. Linke SP, Sengupta S, Khabie N, Jeffries BA, Buchhop S, Miska S, Henning W, Pedeux R, Wang XW, Hofseth LJ et al (2003) p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 63:2596–2605

    PubMed  CAS  Google Scholar 

  119. Restle A, Janz C, Wiesmuller L (2005) Differences in the association of p53 phosphorylated on serine 15 and key enzymes of homologous recombination. Oncogene 24:4380–4387

    PubMed  CAS  Google Scholar 

  120. Zink D, Mayr C, Janz C, Wiesmuller L (2002) Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 21:4788–4800

    PubMed  CAS  Google Scholar 

  121. Gaymes TJ, North PS, Brady N, Hickson ID, Mufti GJ, Rassool FV (2002) Increased error-prone non homologous DNA end-joining—a proposed mechanism of chromosomal instability in Bloom’s syndrome. Oncogene 21:2525–2533

    PubMed  CAS  Google Scholar 

  122. Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmuller L, Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 18:7706–7717

    PubMed  CAS  Google Scholar 

  123. Bertrand P, Saintigny Y, Lopez BS (2004) p53’s double life: transactivation-independent repression of homologous recombination. Trends Genet 20:235–243

    PubMed  CAS  Google Scholar 

  124. Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Natl Rev Mol Cell Biol 6:44–55

    CAS  Google Scholar 

  125. Friedman PN, Chen X, Bargonetti J, Prives C (1993) The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci USA 90:3319–3323

    PubMed  CAS  Google Scholar 

  126. Sakamoto H, Lewis MS, Kodama H, Appella E, Sakaguchi K (1994) Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution. Proc Natl Acad Sci USA 91:8974–8978

    PubMed  CAS  Google Scholar 

  127. Shaulian E, Zauberman A, Ginsberg D, Oren M (1992) Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol 12:5581–5592

    PubMed  CAS  Google Scholar 

  128. Unger T, Mietz JA, Scheffner M, Yee CL, Howley PM (1993) Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol Cell Biol 13:5186–5194

    PubMed  CAS  Google Scholar 

  129. Chene P (1998) In vitro analysis of the dominant negative effect of p53 mutants. J Mol Biol 281:205–209

    PubMed  CAS  Google Scholar 

  130. Srivastava S, Wang S, Tong YA, Hao ZM, Chang EH (1993) Dominant negative effect of a germ-line mutant p53: a step fostering tumorigenesis. Cancer Res 53:4452–4455

    PubMed  CAS  Google Scholar 

  131. Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B (1992) Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830

    PubMed  CAS  Google Scholar 

  132. Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L, Levine AJ, Sacchi A, Cesareni G, Oren M et al (2000) Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 275:29503–29512

    PubMed  CAS  Google Scholar 

  133. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887

    PubMed  CAS  Google Scholar 

  134. Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A, Del Sal G, Levrero M, Sacchi A, Oren M et al (2002) Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277:18817–18826

    PubMed  CAS  Google Scholar 

  135. Marin MC, Jost CA, Brooks LA, Irwin MS, O’Nions J, Tidy JA, James N, McGregor JM, Harwood CA, Yulug IG et al (2000) A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25:47–54

    PubMed  CAS  Google Scholar 

  136. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP (1998) Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18:3735–3743

    PubMed  CAS  Google Scholar 

  137. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202

    PubMed  CAS  Google Scholar 

  138. Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A, Valerie K, Deb SP, Deb S (2004) Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23:4430–4443

    PubMed  CAS  Google Scholar 

  139. Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219

    PubMed  CAS  Google Scholar 

  140. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    PubMed  CAS  Google Scholar 

  141. Cahilly-Snyder L, Yang-Feng T, Francke U, George DL (1987) Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 13:235–244

    PubMed  CAS  Google Scholar 

  142. Haines DS (1997) The mdm2 proto-oncogene. Leuk Lymphoma 26:227–238

    PubMed  CAS  Google Scholar 

  143. Sigal A, Rotter V (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60:6788–6793

    PubMed  CAS  Google Scholar 

  144. Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker KJ, Varley JM (1998) Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene 17:1061–1068

    PubMed  CAS  Google Scholar 

  145. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    PubMed  CAS  Google Scholar 

  146. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    PubMed  CAS  Google Scholar 

  147. Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE, Salter DM, Bird CC, Wyllie AH, Hooper ML et al (1994) Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9:603–609

    PubMed  CAS  Google Scholar 

  148. Liao MJ, Zhang XX, Hill R, Gao J, Qumsiyeh MB, Nichols W, Van Dyke T (1998) No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol 18:3495–3501

    PubMed  CAS  Google Scholar 

  149. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645

    PubMed  CAS  Google Scholar 

  150. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    PubMed  CAS  Google Scholar 

  151. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    PubMed  CAS  Google Scholar 

  152. Chen CY, Hall I, Lansing TJ, Gilmer TM, Tlsty TD, Kastan MB (1996) Separate pathways for p53 induction by ionizing radiation and N-(phosphonoacetyl)-L-aspartate. Cancer Res 56:3659–3662

    PubMed  CAS  Google Scholar 

  153. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK, Multani A, Chang S, Lozano G (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36:63–68

    PubMed  CAS  Google Scholar 

  154. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G (2006) p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 103:19842–19847

    PubMed  CAS  Google Scholar 

  155. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    PubMed  CAS  Google Scholar 

  156. Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429

    PubMed  CAS  Google Scholar 

  157. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262

    PubMed  CAS  Google Scholar 

  158. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    PubMed  CAS  Google Scholar 

  159. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang CM, Livingston DM (1989) The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095

    PubMed  CAS  Google Scholar 

  160. Diaz-Rodriguez E, Sotillo R, Schvartzman JM, Benezra R (2008) Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 105:16719–16724

    PubMed  CAS  Google Scholar 

  161. Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR (1992) The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev 6:177–185

    PubMed  CAS  Google Scholar 

  162. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601

    PubMed  CAS  Google Scholar 

  163. Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473

    PubMed  CAS  Google Scholar 

  164. Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605

    PubMed  CAS  Google Scholar 

  165. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T et al (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7:420–428

    PubMed  CAS  Google Scholar 

  166. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O’Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE et al (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412:561–565

    PubMed  CAS  Google Scholar 

  167. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    PubMed  CAS  Google Scholar 

  168. Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, Begemann M, Crabtree GR, Goff SP (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130

    PubMed  CAS  Google Scholar 

  169. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    PubMed  CAS  Google Scholar 

  170. Lohmann DR (1999) RB1 gene mutations in retinoblastoma. Hum Mutat 14:283–288

    PubMed  CAS  Google Scholar 

  171. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    PubMed  CAS  Google Scholar 

  172. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    PubMed  Google Scholar 

  173. Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162

    PubMed  CAS  Google Scholar 

  174. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784

    PubMed  CAS  Google Scholar 

  175. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401:297–300

    PubMed  CAS  Google Scholar 

  176. Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R et al (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802

    PubMed  CAS  Google Scholar 

  177. Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Berube NG, Dick FA (2010) Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev 24:1351–1363

    PubMed  CAS  Google Scholar 

  178. Manning AL, Longworth MS, Dyson NJ (2010) Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24:1364–1376

    PubMed  CAS  Google Scholar 

  179. van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, Oostra A, Joenje H, te Riele H (2010) Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 24:1377–1388

    PubMed  Google Scholar 

  180. Zheng L, Flesken-Nikitin A, Chen PL, Lee WH (2002) Deficiency of retinoblastoma gene in mouse embryonic stem cells leads to genetic instability. Cancer Res 62:2498–2502

    PubMed  CAS  Google Scholar 

  181. Felsher DW, Zetterberg A, Zhu J, Tlsty T, Bishop JM (2000) Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc Natl Acad Sci USA 97:10544–10548

    PubMed  CAS  Google Scholar 

  182. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    PubMed  CAS  Google Scholar 

  183. Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    PubMed  CAS  Google Scholar 

  184. Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L, Karpova T, McNally J, Dasso M, Cleveland DW, Strunnikov A (2009) Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS One 4:e6831

    PubMed  Google Scholar 

  185. Ribeiro SA, Gatlin JC, Dong Y, Joglekar A, Cameron L, Hudson DF, Farr CJ, McEwen BF, Salmon ED, Earnshaw WC et al (2009) Condensin regulates the stiffness of vertebrate centromeres. Mol Biol Cell 20:2371–2380

    PubMed  CAS  Google Scholar 

  186. Vagnarelli P, Hudson DF, Ribeiro SA, Trinkle-Mulcahy L, Spence JM, Lai F, Farr CJ, Lamond AI, Earnshaw WC (2006) Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8:1133–1142

    PubMed  CAS  Google Scholar 

  187. Yong-Gonzalez V, Wang BD, Butylin P, Ouspenski I, Strunnikov A (2007) Condensin function at centromere chromatin facilitates proper kinetochore tension and ensures correct mitotic segregation of sister chromatids. Genes Cells 12:1075–1090

    PubMed  CAS  Google Scholar 

  188. Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742

    PubMed  CAS  Google Scholar 

  189. Hirano T (2005) Condensins: organizing and segregating the genome. Curr Biol 15:R265–R275

    PubMed  CAS  Google Scholar 

  190. Longworth MS, Herr A, Ji JY, Dyson NJ (2008) RBF1 promotes chromatin condensation through a conserved interaction with the condensin II protein dCAP-D3. Genes Dev 22:1011–1024

    PubMed  CAS  Google Scholar 

  191. Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180:665–672

    PubMed  CAS  Google Scholar 

  192. Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153:517–527

    PubMed  CAS  Google Scholar 

  193. Frame S, Balmain A (1999) Target genes and target cells in carcinogenesis. Br J Cancer 80(Suppl 1):28–33

    Google Scholar 

  194. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

    PubMed  CAS  Google Scholar 

  195. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23

    PubMed  CAS  Google Scholar 

  196. Francis SM, Bergsied J, Isaac CE, Coschi CH, Martens AL, Hojilla CV, Chakrabarti S, Dimattia GE, Khoka R, Wang JY et al (2009) A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development. Mol Cell Biol 29:4455–4466

    PubMed  CAS  Google Scholar 

  197. Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA, Erdmann N, Binne UK, Harrington L, Sicinski P, Berube NG et al (2006) The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol 26:3659–3671

    PubMed  CAS  Google Scholar 

  198. Friend SH, Horowitz JM, Gerber MR, Wang XF, Bogenmann E, Li FP, Weinberg RA (1987) Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci USA 84:9059–9063

    PubMed  CAS  Google Scholar 

  199. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    PubMed  CAS  Google Scholar 

  200. McCormick F (1999) Signalling networks that cause cancer. Trends Cell Biol 9:M53–M56

    PubMed  CAS  Google Scholar 

  201. Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ (1994) The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci USA 91:5124–5128

    PubMed  CAS  Google Scholar 

  202. Ichikawa T, Kyprianou N, Isaacs JT (1990) Genetic instability and the acquisition of metastatic ability by rat mammary cancer cells following v-H-ras oncogene transfection. Cancer Res 50:6349–6357

    PubMed  CAS  Google Scholar 

  203. Ichikawa T, Schalken JA, Ichikawa Y, Steinberg GD, Isaacs JT (1991) H-ras expression, genetic instability, and acquisition of metastatic ability by rat prostatic cancer cells following v-H-ras oncogene transfection. Prostate 18:163–172

    PubMed  CAS  Google Scholar 

  204. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    PubMed  CAS  Google Scholar 

  205. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    PubMed  CAS  Google Scholar 

  206. Statistics CCSsSCoC (2011) Canadian cancer statistics 2011. Canadian Cancer Society, Toronto

    Google Scholar 

  207. Garbe JC, Holst CR, Bassett E, Tlsty T, Stampfer MR (2007) Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6:1927–1936

    PubMed  CAS  Google Scholar 

  208. Han X, Garcia-Manero G, McDonnell TJ, Lozano G, Medeiros LJ, Xiao L, Rosner G, Nguyen M, Fernandez M, Valentin-Vega YA et al (2007) HDM4 (HDMX) is widely expressed in adult pre-B acute lymphoblastic leukemia and is a potential therapeutic target. Mod Pathol 20:54–62

    PubMed  CAS  Google Scholar 

  209. Hall PA, Meek D, Lane DP (1996) p53—integrating the complexity. J Pathol 180:1–5

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.H.C. is a recipient of a CIHR PhD studentship and is a member of the CaRTT training program. Research in F.A.D.’s laboratory is supported by grants from the Canadian Institutes for Health Research and the Canadian Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick A. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coschi, C.H., Dick, F.A. Chromosome instability and deregulated proliferation: an unavoidable duo. Cell. Mol. Life Sci. 69, 2009–2024 (2012). https://doi.org/10.1007/s00018-011-0910-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0910-4

Keywords

Navigation