Skip to main content
Log in

Promoter-associated RNAs and promoter-targeted RNAs

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The world of RNAs is much more complex than previously thought, and has rapidly emerged as one of the most actively researched topics in the life sciences. Recently, two findings in this field were reported and given special attention: promoter-associated RNAs (paRNAs), a novel class of RNAs with numerous potential functions; and promoter-targeted RNA-induced transcriptional gene regulation, a new regulatory mechanism to control transcription. In this review, we summarize the studies in these two areas, and outline the current understanding with respect to the potential biological functions of paRNAs, and the molecular mechanisms of promoter-targeted RNA-induced transcriptional gene silencing and activation. Additionally, we seek to integrate these two areas, as paRNAs may have potential biological links with promoter-targeted RNA-induced transcriptional gene regulation. Finally, we will discuss the significance of identifying paRNAs and the possible use of promoter-targeted RNAs in gene regulation and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19(19):5194–5201. doi:10.1093/emboj/19.19.5194

    Article  PubMed  CAS  Google Scholar 

  2. Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9(2):315–327 pii: S1097276502004409

    Article  PubMed  CAS  Google Scholar 

  3. Morey C, Navarro P, Debrand E, Avner P, Rougeulle C, Clerc P (2004) The region 3′ to Xist mediates X chromosome counting and H3 Lys-4 dimethylation within the Xist gene. EMBO J 23(3):594–604. doi:10.1038/sj.emboj.7600071

    Article  PubMed  CAS  Google Scholar 

  4. Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320(5881):1336–1341. doi:10.1126/science.1157676

    Article  PubMed  CAS  Google Scholar 

  5. Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143(3):390–403. doi:10.1016/j.cell.2010.09.049

    Article  PubMed  CAS  Google Scholar 

  6. Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20(10):1268–1282. doi:10.1101/gad.1416906

    Article  PubMed  CAS  Google Scholar 

  7. Chamberlain SJ, Brannan CI (2001) The Prader–Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73(3):316–322. doi:10.1006/geno.2001.6543S0888

    Article  PubMed  CAS  Google Scholar 

  8. de los Santos T, Schweizer J, Rees CA, Francke U (2000) Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader–Willi deletion region, which is highly expressed in brain. Am J Hum Genet 67(5):1067–1082. doi:10.1086/303106

    Article  PubMed  Google Scholar 

  9. Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, Lufkin T, Rigoutsos I, Thomson AM, Lim B (2008) MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26(1):17–29. doi:10.1634/stemcells.2007-0295

    Article  PubMed  CAS  Google Scholar 

  10. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18(9):1433–1445. doi:10.1101/gr.078378.108

    Article  PubMed  CAS  Google Scholar 

  11. Buhler M, Haas W, Gygi SP, Moazed D (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129(4):707–721. doi:10.1016/j.cell.2007.03.038

    Article  PubMed  CAS  Google Scholar 

  12. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848

    Article  PubMed  CAS  Google Scholar 

  13. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488

    Article  PubMed  CAS  Google Scholar 

  14. Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457(7232):1038–1042

    Article  PubMed  CAS  Google Scholar 

  15. Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH, Jensen TH (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322(5909):1851–1854

    Article  PubMed  CAS  Google Scholar 

  16. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA (2008) Divergent transcription from active promoters. Science 322(5909):1849–1851

    Article  PubMed  CAS  Google Scholar 

  17. Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J, Daub CO, Hume DA, Suzuki H, Orlando V, Carninci P, Hayashizaki Y, Mattick JS (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41(5):572–578

    Article  PubMed  CAS  Google Scholar 

  18. Hawkins PG, Santoso S, Adams C, Anest V, Morris KV (2009) Promoter-targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 37(9):2984–2995

    Article  PubMed  CAS  Google Scholar 

  19. Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105(42):16230–16235

    Article  PubMed  CAS  Google Scholar 

  20. Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305(5688):1289–1292

    Article  PubMed  CAS  Google Scholar 

  21. Napoli S, Pastori C, Magistri M, Carbone GM, Catapano CV (2009) Promoter-specific transcriptional interference and c-myc gene silencing by siRNAs in human cells. EMBO J 28(12):1708–1719

    Article  PubMed  CAS  Google Scholar 

  22. Ting AH, Schuebel KE, Herman JG, Baylin SB (2005) Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet 37(8):906–910

    Article  PubMed  CAS  Google Scholar 

  23. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen ZX, Riggs AD, Rossi JJ, Morris KV (2006) The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12(2):256–262

    Article  PubMed  CAS  Google Scholar 

  24. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105(5):1608–1613

    Article  PubMed  CAS  Google Scholar 

  25. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 103(46):17337–17342

    Article  PubMed  CAS  Google Scholar 

  26. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3(3):166–173

    Article  PubMed  CAS  Google Scholar 

  27. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi:10.1038/35888

    Article  PubMed  CAS  Google Scholar 

  28. Calabrese JM, Seila AC, Yeo GW, Sharp PA (2007) RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc Natl Acad Sci USA 104(46):18097–18102

    Article  PubMed  CAS  Google Scholar 

  29. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense transcriptomes of human cells. Science 322(5909):1855–1857

    Article  PubMed  CAS  Google Scholar 

  30. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project, Fejes-Toth KSV, Sachidanandam R, Assaf G, Hannon GJ, Kapranov P, Foissac S, Willingham AT, Duttagupta R, Dumais E, Gingeras TR (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457(7232):1028–1032

    Article  CAS  Google Scholar 

  31. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037

    Article  PubMed  CAS  Google Scholar 

  32. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125(2):301–313

    Article  PubMed  CAS  Google Scholar 

  33. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    Article  PubMed  CAS  Google Scholar 

  34. Seila AC, Core LJ, Lis JT, Sharp PA (2009) Divergent transcription: a new feature of active promoters. Cell Cycle 8(16):2557–2564

    Article  PubMed  CAS  Google Scholar 

  35. Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9(9):673–678

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543

    Article  PubMed  CAS  Google Scholar 

  37. Taft RJ, Hawkins PG, Mattick JS, Morris KV (2011) The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF) localization. Epigenetics Chromatin 4:13

    Article  PubMed  CAS  Google Scholar 

  38. Berretta J, Pinskaya M, Morillon A (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22(5):615–626

    Article  PubMed  CAS  Google Scholar 

  39. Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131(4):706–717

    Article  PubMed  CAS  Google Scholar 

  40. Han J, Kim D, Morris KV (2007) Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci USA 104(30):12422–12427

    Article  PubMed  CAS  Google Scholar 

  41. Hongay CF, Grisafi PL, Galitski T, Fink GR (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127(4):735–745

    Article  PubMed  CAS  Google Scholar 

  42. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445(7128):666–670

    Article  PubMed  CAS  Google Scholar 

  43. Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG (2008) Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 4(11):e1000258

    Article  PubMed  Google Scholar 

  44. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, Janowski BA (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15(8):842–848

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454(7200):126–130

    Article  PubMed  CAS  Google Scholar 

  46. Imamura T, Yamamoto S, Ohgane J, Hattori N, Tanaka S, Shiota K (2004) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322(2):593–600

    Article  PubMed  CAS  Google Scholar 

  47. Morris KV (2005) siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci 62(24):3057–3066

    Article  PubMed  CAS  Google Scholar 

  48. Shibuya K, Fukushima S, Takatsuji H (2009) RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci USA 106(5):1660–1665. doi:10.1073/pnas.0809294106

    Article  PubMed  CAS  Google Scholar 

  49. Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, Lue TF, Li LC (2010) RNAa is conserved in mammalian cells. PLoS One 5(1):e8848

    Article  PubMed  Google Scholar 

  50. Turunen MP, Lehtola T, Heinonen SE, Assefa GS, Korpisalo P, Girnary R, Glass CK, Vaisanen S, Yla-Herttuala S (2009) Efficient regulation of VEGF expression by promoter-targeted lentiviral shRNAs based on epigenetic mechanism: a novel example of epigenetherapy. Circ Res 105(6):604–609. doi:10.1161/CIRCRESAHA.109.200774

    Article  PubMed  CAS  Google Scholar 

  51. Chen R, Wang T, Rao K, Yang J, Zhang S, Wang S, Liu J, Ye Z (2011) Up-regulation of VEGF by small activator RNA in human corpus cavernosum smooth muscle cells. J Sex Med 8(10):2773–2780. doi:10.1111/j.1743-6109.2011.02412.x

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki K, Shijuuku T, Fukamachi T, Zaunders J, Guillemin G, Cooper D, Kelleher A (2005) Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. J RNAi Gene Silencing 1(2):66–78

    PubMed  CAS  Google Scholar 

  53. Pulukuri SM, Rao JS (2007) Small interfering RNA directed reversal of urokinase plasminogen activator demethylation inhibits prostate tumor growth and metastasis. Cancer Res 67(14):6637–6646

    Article  PubMed  CAS  Google Scholar 

  54. Park CW, Chen Z, Kren BT, Steer CJ (2004) Double-stranded siRNA targeted to the huntingtin gene does not induce DNA methylation. Biochem Biophys Res Commun 323(1):275–280

    Article  PubMed  CAS  Google Scholar 

  55. Janowski BA, Huffman KE, Schwartz JC, Ram R, Hardy D, Shames DS, Minna JD, Corey DR (2005) Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nat Chem Biol 1(4):216–222

    Article  PubMed  CAS  Google Scholar 

  56. Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, Minna JD, Corey DR (2006) Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol 13(9):787–792

    Article  PubMed  CAS  Google Scholar 

  57. Janowski BA, Corey DR (2005) Inhibiting transcription of chromosomal DNA using antigene RNAs. Nucleic Acids Symp Ser (Oxf) 49:367–368

    Article  Google Scholar 

  58. Chu Y, Yue X, Younger ST, Janowski BA, Corey DR (2010) Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res 38(21):7736–7748

    Article  PubMed  CAS  Google Scholar 

  59. Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C, Lopez-Toledano MA (2011) Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis 2011:929042. doi:10.4061/2011/929042

    PubMed  Google Scholar 

  60. Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1(3):165–175. doi:10.4161/trns.1.3.13332

    Article  PubMed  Google Scholar 

  61. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  62. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693. doi:10.1126/science.1192002

    Article  PubMed  CAS  Google Scholar 

  63. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  PubMed  CAS  Google Scholar 

  64. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  PubMed  CAS  Google Scholar 

  65. Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T (2005) Identification of novel argonaute-associated proteins. Curr Biol 15(23):2149–2155

    Article  PubMed  CAS  Google Scholar 

  66. Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13(9):793–797

    Article  PubMed  CAS  Google Scholar 

  67. Kato H, Goto DB, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309(5733):467–469

    Article  PubMed  CAS  Google Scholar 

  68. Deng W, Roberts SG (2007) TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma 116(5):417–429

    Article  PubMed  CAS  Google Scholar 

  69. Hahn S (2004) Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11(5):394–403

    Article  PubMed  CAS  Google Scholar 

  70. Bomsztyk K, Denisenko O, Ostrowski J (2004) hnRNP K: one protein multiple processes. BioEssays 26(6):629–638

    Article  PubMed  CAS  Google Scholar 

  71. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19(3):381–391

    Article  PubMed  CAS  Google Scholar 

  72. Eissenberg JC, Shilatifard A (2006) Leaving a mark: the many footprints of the elongating RNA polymerase II. Curr Opin Genet Dev 16(2):184–190

    Article  PubMed  CAS  Google Scholar 

  73. Smallwood A, Black JC, Tanese N, Pradhan S, Carey M (2008) HP1-mediated silencing targets Pol II coactivator complexes. Nat Struct Mol Biol 15(3):318–320

    Article  PubMed  CAS  Google Scholar 

  74. Check E (2007) RNA interference: hitting the on switch. Nature 448(7156):855–858

    Article  PubMed  CAS  Google Scholar 

  75. Garber K (2006) Genetics. Small RNAs reveal an activating side. Science 314(5800):741–742

    Article  PubMed  CAS  Google Scholar 

  76. Rossi JJ (2007) Transcriptional activation by small RNA duplexes. Nat Chem Biol 3(3):136–137

    Article  PubMed  CAS  Google Scholar 

  77. Morris KV (2009) RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides 19(4):299–306

    Article  PubMed  CAS  Google Scholar 

  78. Suzuki K, Kelleher AD (2009) Transcriptional regulation by promoter-targeted RNAs. Curr Top Med Chem 9(12):1079–1087

    Article  PubMed  CAS  Google Scholar 

  79. Allo M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA, Klinck R, Chabot B, Kornblihtt AR (2009) Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol 16(7):717–724

    Article  PubMed  CAS  Google Scholar 

  80. Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24(20):2264–2269. doi:10.1101/gad.590910

    Article  PubMed  CAS  Google Scholar 

  81. Buratowski S (2008) Transcription. Gene expression—where to start? Science 322(5909):1804–1805

    Article  PubMed  CAS  Google Scholar 

  82. Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7(8):557–567

    Article  PubMed  CAS  Google Scholar 

  83. Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39(12):1507–1511

    Article  PubMed  CAS  Google Scholar 

  84. Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39(12):1512–1516

    Article  PubMed  CAS  Google Scholar 

  85. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, Kossen K, Fosnaugh K, Vargeese C, Gomez A, Bouhana K, Aitchison R, Pavco P, Campochiaro PA (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 13(3):225–234. doi:10.1038/sj.gt.3302641

    Article  PubMed  CAS  Google Scholar 

  86. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452(7187):591–597. doi:10.1038/nature06765

    Article  PubMed  CAS  Google Scholar 

  87. Morris KV (2006) Therapeutic potential of siRNA-mediated transcriptional gene silencing. Biotechniques Suppl 7–13

  88. Hawkins PG, Morris KV (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7(5):602–607

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-xia Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Bx., Ma, Jx. Promoter-associated RNAs and promoter-targeted RNAs. Cell. Mol. Life Sci. 69, 2833–2842 (2012). https://doi.org/10.1007/s00018-012-0953-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0953-1

Keywords

Navigation