Skip to main content

Advertisement

Log in

Type I IFN-mediated regulation of IL-1 production in inflammatory disorders

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  PubMed  CAS  Google Scholar 

  2. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    Article  PubMed  CAS  Google Scholar 

  3. Osorio F, Reis e Sousa C (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34(5):651–664

    Article  PubMed  CAS  Google Scholar 

  4. Elinav E et al (2011) Regulation of the antimicrobial response by NLR proteins. Immunity 34(5):665–679

    Article  PubMed  CAS  Google Scholar 

  5. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    Article  PubMed  CAS  Google Scholar 

  6. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45

    Article  PubMed  CAS  Google Scholar 

  7. Dinarello CA (2004) Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res 10(4):201–222

    PubMed  CAS  Google Scholar 

  8. Rasmussen AK, Bendtzen K, Feldt-Rasmussen U (2000) Thyrocyte-interleukin-1 interactions. Exp Clin Endocrinol Diabetes 108(2):67–71

    Article  PubMed  CAS  Google Scholar 

  9. Dower SK et al (1986) The cell surface receptors for interleukin-1 alpha and interleukin-1 beta are identical. Nature 324(6094):266–268

    Article  PubMed  CAS  Google Scholar 

  10. Stylianou E et al (1992) Interleukin 1 induces NF-kappa B through its type I but not its type II receptor in lymphocytes. J Biol Chem 267(22):15836–15841

    PubMed  CAS  Google Scholar 

  11. Leung K et al (1994) The cytoplasmic domain of the interleukin-1 receptor is required for nuclear factor-kappa B signal transduction. J Biol Chem 269(3):1579–1582

    PubMed  CAS  Google Scholar 

  12. Croston GE, Cao Z, Goeddel DV (1995) NF-kappa B activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J Biol Chem 270(28):16514–16517

    Article  PubMed  CAS  Google Scholar 

  13. O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18

    Article  PubMed  Google Scholar 

  14. Dinarello CA (2011) A clinical perspective of IL-1 beta as the gatekeeper of inflammation. Eur J Immunol 41(5):1203–1217

    Article  PubMed  CAS  Google Scholar 

  15. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    PubMed  CAS  Google Scholar 

  16. Fantuzzi G, Dinarello CA (1996) The inflammatory response in interleukin-1 beta-deficient mice: comparison with other cytokine-related knock-out mice. J Leukoc Biol 59(4):489–493

    PubMed  CAS  Google Scholar 

  17. Yazdi AS et al (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1 alpha and IL-1 beta. Proc Natl Acad Sci USA 107(45):19449–19454

    Article  PubMed  CAS  Google Scholar 

  18. Chen CJ et al (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116(8):2262–2271

    Article  PubMed  CAS  Google Scholar 

  19. Smith KA, Gilbride KJ, Favata MF (1980) Lymphocyte activating factor promotes T-cell growth factor production by cloned murine lymphoma cells. Nature 287(5785):853–855

    Article  PubMed  CAS  Google Scholar 

  20. Sutton C et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691

    Article  PubMed  CAS  Google Scholar 

  21. Acosta-Rodriguez EV et al (2007) Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949

    Article  PubMed  CAS  Google Scholar 

  22. O’Sullivan BJ et al (2006) IL-1 beta breaks tolerance through expansion of CD25+ effector T cells. J Immunol 176(12):7278–7287

    PubMed  Google Scholar 

  23. Hannum CH et al (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature 343(6256):336–340

    Article  PubMed  CAS  Google Scholar 

  24. Carter DB et al (1990) Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 344(6267):633–638

    Article  PubMed  CAS  Google Scholar 

  25. Aksentijevich I et al (2009) An auto inflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 360(23):2426–2437

    Article  PubMed  CAS  Google Scholar 

  26. Reddy S et al (2009) An auto inflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med 360(23):2438–2444

    Article  PubMed  CAS  Google Scholar 

  27. Masters SL et al (2009) Horror autoinflammaticus: the molecular pathophysiology of auto inflammatory disease. Annu Rev Immunol 27:621–668

    Article  PubMed  CAS  Google Scholar 

  28. Netea MG et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1 beta in monocytes and macrophages. Blood 113(10):2324–2335

    Article  PubMed  CAS  Google Scholar 

  29. Hiscott J et al (1993) Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 13(10):6231–6240

    PubMed  CAS  Google Scholar 

  30. Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791

    Article  PubMed  CAS  Google Scholar 

  31. Bauernfeind F et al (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68(5):765–783

    Article  PubMed  CAS  Google Scholar 

  32. Guarda G et al (2011) Differential expression of NLRP3 among hematopoietic cells. J Immunol 186(4):2529–2534

    Article  PubMed  CAS  Google Scholar 

  33. Lu JY, Sadri N, Schneider RJ (2006) Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20(22):3174–3184

    Article  PubMed  CAS  Google Scholar 

  34. Fenton MJ et al (1987) Transcriptional regulation of the human prointerleukin 1 beta gene. J Immunol 138(11):3972–3979

    PubMed  CAS  Google Scholar 

  35. Schindler R, Clark BD, Dinarello CA (1990) Dissociation between interleukin-1 beta mRNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem 265(18):10232–10237

    PubMed  CAS  Google Scholar 

  36. Schindler R, Gelfand JA, Dinarello CA (1990) Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. Blood 76(8):1631–1638

    PubMed  CAS  Google Scholar 

  37. Kaspar RL, Gehrke L (1994) Peripheral blood mononuclear cells stimulated with C5a or lipopolysaccharide to synthesize equivalent levels of IL-1 beta mRNA show unequal IL-1 beta protein accumulation but similar polyribosome profiles. J Immunol 153(1):277–286

    PubMed  CAS  Google Scholar 

  38. Mosley B et al (1987) The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem 262(7):2941–2944

    PubMed  CAS  Google Scholar 

  39. Thornberry NA et al (1992) A novel hetero dimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774

    Article  PubMed  CAS  Google Scholar 

  40. Kuida K et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267(5206):2000–2003

    Article  PubMed  CAS  Google Scholar 

  41. Li P et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80(3):401–411

    Article  PubMed  CAS  Google Scholar 

  42. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  PubMed  CAS  Google Scholar 

  43. Narayan S et al (2011) Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice. Arthritis Rheum 63(2):422–433

    Article  PubMed  CAS  Google Scholar 

  44. Fettelschoss A et al (2011) Inflammasome activation and IL-1beta target IL-1alpha for secretion as opposed to surface expression. Proc Natl Acad Sci USA 108(44):18055–18060

    Article  PubMed  CAS  Google Scholar 

  45. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  PubMed  CAS  Google Scholar 

  46. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  PubMed  CAS  Google Scholar 

  47. Suzuki T et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3(8):e111

    Article  PubMed  CAS  Google Scholar 

  48. Lightfield KL et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9(10):1171–1178

    Article  PubMed  CAS  Google Scholar 

  49. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595

    Article  PubMed  CAS  Google Scholar 

  50. Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218

    Article  PubMed  CAS  Google Scholar 

  51. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2):240–244

    Article  PubMed  CAS  Google Scholar 

  52. Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166(1):1–15

    Article  PubMed  CAS  Google Scholar 

  53. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215

    Article  PubMed  CAS  Google Scholar 

  54. Chen G et al (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398

    Article  PubMed  CAS  Google Scholar 

  55. Elinav E et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757

    Article  PubMed  CAS  Google Scholar 

  56. Jeru I et al (2011) Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum 63(5):1459–1464

    Article  PubMed  CAS  Google Scholar 

  57. Borghini S et al (2011) Clinical presentation and pathogenesis of cold-induced auto inflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum 63(3):830–839

    Article  PubMed  CAS  Google Scholar 

  58. Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243(1):109–118

    Article  PubMed  CAS  Google Scholar 

  59. Billiau A (2006) Anti-inflammatory properties of type I interferons. Antivir Res 71(2–3):108–116

    Article  PubMed  CAS  Google Scholar 

  60. Schlaak JF et al (2002) Cell-type and donor-specific transcriptional responses to interferon-alpha. Use of customized gene arrays. J Biol Chem 277(51):49428–49437

    Article  PubMed  CAS  Google Scholar 

  61. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658

    Article  PubMed  CAS  Google Scholar 

  62. Goodbourn S, Didcock L, Randall RE (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 81(Pt 10):2341–2364

    PubMed  CAS  Google Scholar 

  63. Basler CF, Garcia-Sastre A (2002) Viruses and the type I interferon antiviral system: induction and evasion. Int Rev Immunol 21(4–5):305–337

    Article  PubMed  CAS  Google Scholar 

  64. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

    Article  PubMed  CAS  Google Scholar 

  65. Young HA, Bream JH (2007) IFN-gamma: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol 316:97–117

    Article  PubMed  CAS  Google Scholar 

  66. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  PubMed  CAS  Google Scholar 

  67. Hwang ES (2010) Transcriptional regulation of T helper 17 cell differentiation. Yonsei Med J 51(4):484–491

    Article  PubMed  CAS  Google Scholar 

  68. Schroder K et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189

    Article  PubMed  CAS  Google Scholar 

  69. Coccia EM et al (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34(3):796–805

    Article  PubMed  CAS  Google Scholar 

  70. Witte K et al (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21(4):237–251

    Article  PubMed  CAS  Google Scholar 

  71. Sheppard P et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68

    Article  PubMed  CAS  Google Scholar 

  72. Kotenko SV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4(1):69–77

    Article  PubMed  CAS  Google Scholar 

  73. Uze G, Monneron D (2007) IL-28 and IL-29: newcomers to the interferon family. Biochimie 89(6–7):729–734

    Article  PubMed  CAS  Google Scholar 

  74. Nickolaus P, Zawatzky R (1994) Inhibition by interleukin-4 of constitutive beta interferon synthesis in mouse macrophages. J Virol 68(10):6763–6766

    PubMed  CAS  Google Scholar 

  75. Bautista EM et al (2005) Constitutive expression of alpha interferon by skin dendritic cells confers resistance to infection by foot-and-mouth disease virus. J Virol 79(8):4838–4847

    Article  PubMed  CAS  Google Scholar 

  76. Lienenklaus S et al (2009) Novel reporter mouse reveals constitutive and inflammatory expression of IFN-beta in vivo. J Immunol 183(5):3229–3236

    Article  PubMed  CAS  Google Scholar 

  77. Pulverer JE et al (2010) Temporal and spatial resolution of type I and III interferon responses in vivo. J Virol 84(17):8626–8638

    Article  PubMed  CAS  Google Scholar 

  78. Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2(5):378–386

    Article  PubMed  CAS  Google Scholar 

  79. Weber F et al (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80(10):5059–5064

    Article  PubMed  CAS  Google Scholar 

  80. McCartney SA, Colonna M (2009) Viral sensors: diversity in pathogen recognition. Immunol Rev 227(1):87–94

    Article  PubMed  CAS  Google Scholar 

  81. Meylan E et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172

    Article  PubMed  CAS  Google Scholar 

  82. Merika M, Thanos D (2001) Enhanceosomes. Curr Opin Genet Dev 11(2):205–208

    Article  PubMed  CAS  Google Scholar 

  83. Schafer SL et al (1998) Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem 273(5):2714–2720

    Article  PubMed  CAS  Google Scholar 

  84. Honda K et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434(7034):772–777

    Article  PubMed  CAS  Google Scholar 

  85. Rathinam VA, Fitzgerald KA (2011) Innate immune sensing of DNA viruses. Virology 411(2):153–162

    Article  PubMed  CAS  Google Scholar 

  86. Ishikawa H, Barber GN (2011) The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cell Mol Life Sci 68(7):1157–1165

    Article  PubMed  CAS  Google Scholar 

  87. Hornung V et al (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537

    PubMed  CAS  Google Scholar 

  88. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  89. Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227(1):75–86

    Article  PubMed  CAS  Google Scholar 

  90. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226

    Article  PubMed  CAS  Google Scholar 

  91. Colonna M, Krug A, Cella M (2002) Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14(3):373–379

    Article  PubMed  CAS  Google Scholar 

  92. Silvennoinen O et al (1993) Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366(6455):583–585

    Article  PubMed  CAS  Google Scholar 

  93. Borden EC et al (2007) Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6(12):975–990

    Article  PubMed  CAS  Google Scholar 

  94. de Veer MJ et al (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69(6):912–920

    PubMed  Google Scholar 

  95. Harada H, Taniguchi T, Tanaka N (1998) The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie 80(8–9):641–650

    Article  PubMed  CAS  Google Scholar 

  96. Joshi S et al (2010) Mechanisms of mRNA translation of interferon stimulated genes. Cytokine 52(1–2):123–127

    Article  PubMed  CAS  Google Scholar 

  97. Crow MK (2010) Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther 12(Suppl 1):S5

    Article  PubMed  CAS  Google Scholar 

  98. Choubey D, Moudgil KD (2011) Interferons in autoimmune and inflammatory diseases: regulation and roles. J Interferon Cytokine Res 31(12):857–865

    Article  PubMed  CAS  Google Scholar 

  99. Kalie E et al (2008) The stability of the ternary interferon-receptor complex rather than the affinity to the individual subunits dictates differential biological activities. J Biol Chem 283(47):32925–32936

    Article  PubMed  CAS  Google Scholar 

  100. Bowie AG, Unterholzner L (2008) Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8(12):911–922

    Article  PubMed  CAS  Google Scholar 

  101. Garcia MA, Meurs EF, Esteban M (2007) The ds RNA protein kinase PKR: virus and cell control. Biochimie 89(6–7):799–811

    Article  PubMed  CAS  Google Scholar 

  102. Hovanessian AG (2007) On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5′oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 18(5–6):351–361

    Article  PubMed  CAS  Google Scholar 

  103. Randall RE, Goodbourn S (2008) Interferons and viruses: an inter play between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89(Pt 1):1–47

    Article  PubMed  CAS  Google Scholar 

  104. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559–568

    Article  PubMed  CAS  Google Scholar 

  105. Mattei F, Schiavoni G, Tough DF (2010) Regulation of immune cell homeostasis by type I interferons. Cytokine Growth Factor Rev 21(4):227–236

    Article  PubMed  CAS  Google Scholar 

  106. Longhi MP et al (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206(7):1589–1602

    Article  PubMed  CAS  Google Scholar 

  107. Le Bon A et al (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4(10):1009–1015

    Article  PubMed  CAS  Google Scholar 

  108. Theofilopoulos AN et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336

    Article  PubMed  CAS  Google Scholar 

  109. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5(11):1249–1255

    Article  PubMed  CAS  Google Scholar 

  110. Brinkmann V et al (1993) Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. J Exp Med 178(5):1655–1663

    Article  PubMed  CAS  Google Scholar 

  111. Krug A et al (2003) CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J Immunol 170(7):3468–3477

    PubMed  CAS  Google Scholar 

  112. Persky ME, Murphy KM, Farrar JD (2005) IL-12, but not IFN-alpha, promotes STAT4 activation and Th1 development in murine CD4+ T cells expressing a chimeric murine/human Stat2 gene. J Immunol 174(1):294–301

    PubMed  CAS  Google Scholar 

  113. Berenson LS et al (2006) Distinct characteristics of murine STAT4 activation in response to IL-12 and IFN-alpha. J Immunol 177(8):5195–5203

    PubMed  CAS  Google Scholar 

  114. Matikainen S et al (2001) IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 31(7):2236–2245

    Article  PubMed  CAS  Google Scholar 

  115. Rogge L et al (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185(5):825–831

    Article  PubMed  CAS  Google Scholar 

  116. Huber JP et al (2010) Cutting edge: Type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J Immunol 185(2):813–817

    Article  PubMed  CAS  Google Scholar 

  117. Harrington LE et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  PubMed  CAS  Google Scholar 

  118. Moschen AR et al (2008) Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology 213(9–10):779–787

    Article  PubMed  CAS  Google Scholar 

  119. Sweeney CM et al (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25(6):1170–1181

    Article  PubMed  CAS  Google Scholar 

  120. Ramgolam VS et al (2009) IFN-beta inhibits human Th17 cell differentiation. J Immunol 183(8):5418–5427

    Article  PubMed  CAS  Google Scholar 

  121. Geng Y et al (1995) Tumor suppressor activity of the human consensus type I interferon gene. Cytokines Mol Ther 1(4):289–300

    PubMed  CAS  Google Scholar 

  122. Tanaka N et al (1998) Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 3(1):29–37

    Article  PubMed  CAS  Google Scholar 

  123. Marrack P, Kappler J, Mitchell T (1999) Type I interferons keep activated T cells alive. J Exp Med 189(3):521–530

    Article  PubMed  CAS  Google Scholar 

  124. Davis AM et al (2008) Cutting edge: a T-bet-independent role for IFN-alpha/beta in regulating IL-2 secretion in human CD4+ central memory T cells. J Immunol 181(12):8204–8208

    PubMed  CAS  Google Scholar 

  125. Curtsinger JM et al (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174(8):4465–4469

    PubMed  CAS  Google Scholar 

  126. Le Bon A et al (2006) Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J Immunol 176(8):4682–4689

    PubMed  Google Scholar 

  127. Ronnblom L, Alm GV, Eloranta ML (2009) Type I interferon and lupus. Curr Opin Rheumatol 21(5):471–477

    Article  PubMed  CAS  Google Scholar 

  128. Zhang X et al (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8(5):591–599

    Article  PubMed  CAS  Google Scholar 

  129. Mattei F et al (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167(3):1179–1187

    PubMed  CAS  Google Scholar 

  130. Di Sabatino A et al (2011) Role of IL-15 in immune-mediated and infectious diseases. Cytokine Growth Factor Rev 22(1):19–33

    Article  PubMed  CAS  Google Scholar 

  131. Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215

    Article  PubMed  CAS  Google Scholar 

  132. Le Bon A et al (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14(4):461–470

    Article  PubMed  Google Scholar 

  133. Jego G et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19(2):225–234

    Article  PubMed  CAS  Google Scholar 

  134. Badr G et al (2010) Type I interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaB and Bcl-2/Bcl(XL). Cell Immunol 263(1):31–40

    Article  PubMed  CAS  Google Scholar 

  135. Bekisz J et al (2010) Antiproliferative properties of type I and type II interferon. Pharmaceuticals 3(4):994–1015

    Article  PubMed  CAS  Google Scholar 

  136. Rath PC, Aggarwal BB (2001) Antiproliferative effects of IFN-alpha correlate with the downregulation of nuclear factor-kappa B in human Burkitt lymphoma Daudi cells. J Interferon Cytokine Res 21(7):523–528

    Article  PubMed  CAS  Google Scholar 

  137. Takaoka A et al (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424(6948):516–523

    Article  PubMed  CAS  Google Scholar 

  138. Fuertes Marraco SA et al (2011) Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by Poly IC in vivo. PLoS ONE 6(6):e20189

    Article  PubMed  CAS  Google Scholar 

  139. Eitz Ferrer P et al (2011) Induction of Noxa-mediated apoptosis by modified vaccinia virus Ankara depends on viral recognition by cytosolic helicases, leading to IRF-3/IFN-beta-dependent induction of pro-apoptotic Noxa. PLoS Pathog 7(6):e1002083

    Article  PubMed  CAS  Google Scholar 

  140. Lee SB, Esteban M (1994) The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199(2):491–496

    Article  PubMed  CAS  Google Scholar 

  141. Gil J, Esteban M (2000) The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-alpha receptors. Oncogene 19(32):3665–3674

    Article  PubMed  CAS  Google Scholar 

  142. Hsu LC et al (2004) The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428(6980):341–345

    Article  PubMed  CAS  Google Scholar 

  143. Chawla-Sarkar M et al (2003) Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8(3):237–249

    Article  PubMed  CAS  Google Scholar 

  144. Salaun B, Romero P, Lebecque S (2007) Toll-like receptors’ two-edged sword: when immunity meets apoptosis. Eur J Immunol 37(12):3311–3318

    Article  PubMed  CAS  Google Scholar 

  145. Haller O, Kochs G, Weber F (2006) The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344(1):119–130

    Article  PubMed  CAS  Google Scholar 

  146. Besch R et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119(8):2399–2411

    PubMed  CAS  Google Scholar 

  147. Hasan UA et al (2007) Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. Proc Natl Acad Sci USA 104(19):8047–8052

    Article  PubMed  CAS  Google Scholar 

  148. Colonna M (2006) Toll-like receptors and IFN-alpha: partners in autoimmunity. J Clin Invest 116(9):2319–2322

    Article  PubMed  CAS  Google Scholar 

  149. Hall JC, Rosen A (2010) Type I interferons: crucial participants in disease amplification in autoimmunity. Nat Rev Rheumatol 6(1):40–49

    Article  PubMed  CAS  Google Scholar 

  150. Akeno N et al (2011) IFN-alpha mediates the development of autoimmunity both by direct tissue toxicity and through immune cell recruitment mechanisms. J Immunol 186(8):4693–4706

    Article  PubMed  CAS  Google Scholar 

  151. Borg FA, Isenberg DA (2007) Syndromes and complications of interferon therapy. Curr Opin Rheumatol 19(1):61–66

    Article  PubMed  CAS  Google Scholar 

  152. Vallin H et al (1999) Anti-double-stranded DNA antibodies and immuno stimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 163(11):6306–6313

    PubMed  CAS  Google Scholar 

  153. Bave U et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302

    PubMed  CAS  Google Scholar 

  154. Means TK et al (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115(2):407–417

    PubMed  CAS  Google Scholar 

  155. Kahlenberg JM et al (2011) Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 187(11):6143–6156

    Article  PubMed  CAS  Google Scholar 

  156. Panchanathan R et al (2010) Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J Immunol 185(12):7385–7393

    Article  PubMed  CAS  Google Scholar 

  157. Martens HA et al (2009) An extensive screen of the HLA region reveals an independent association of HLA class I and class II with susceptibility for systemic lupus erythematosus. Scand J Rheumatol 38(4):256–262

    Article  PubMed  CAS  Google Scholar 

  158. Sigurdsson S et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76(3):528–537

    Article  PubMed  CAS  Google Scholar 

  159. Santiago-Raber ML et al (2003) Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 197(6):777–788

    Article  PubMed  CAS  Google Scholar 

  160. Braun D, Geraldes P, Demengeot J (2003) Type I Interferon controls the onset and severity of autoimmune manifestations in lpr mice. J Autoimmun 20(1):15–25

    Article  PubMed  CAS  Google Scholar 

  161. Hron JD, Peng SL (2004) Type I IFN protects against murine lupus. J Immunol 173(3):2134–2142

    PubMed  CAS  Google Scholar 

  162. Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54(1):336–342

    Article  PubMed  CAS  Google Scholar 

  163. Vakaloglou KM, Mavragani CP (2011) Activation of the type I interferon pathway in primary Sjogren’s syndrome: an update. Curr Opin Rheumatol 23(5):459–464

    Article  PubMed  CAS  Google Scholar 

  164. van der Pouw Kraan TC et al (2007) Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis 66(8):1008–1014

    Article  PubMed  CAS  Google Scholar 

  165. Harboe E et al (2009) Fatigue in primary Sjogren’s syndrome—a link to sickness behaviour in animals? Brain Behav Immun 23(8):1104–1108

    Article  PubMed  CAS  Google Scholar 

  166. Meijer JM et al (2007) The future of biologic agents in the treatment of Sjogren’s syndrome. Clin Rev Allergy Immunol 32(3):292–297

    Article  PubMed  CAS  Google Scholar 

  167. Tak PP (2004) IFN-beta in rheumatoid arthritis. Front Biosci 9:3242–3247

    Article  PubMed  CAS  Google Scholar 

  168. Ying F et al (2011) Type I IFN protects against antigen-induced arthritis. Eur J Immunol 41(6):1687–1695

    Article  PubMed  CAS  Google Scholar 

  169. van Holten J et al (2004) Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther 6(3):R239–R249

    Article  PubMed  CAS  Google Scholar 

  170. Tak PP et al (1999) The effects of interferon beta treatment on arthritis. Rheumatology (Oxford) 38(4):362–369

    Article  CAS  Google Scholar 

  171. Vervoordeldonk MJ, Aalbers CJ, Tak PP (2009) Interferon beta for rheumatoid arthritis: new clothes for an old kid on the block. Ann Rheum Dis 68(2):157–158

    Article  PubMed  CAS  Google Scholar 

  172. Koltai M, Meos E (1973) Inhibition of the acute inflammatory response by interferon inducers. Nature 242(5399):525–526

    Article  PubMed  CAS  Google Scholar 

  173. Triantaphyllopoulos KA et al (1999) Amelioration of collagen-induced arthritis and suppression of interferon-gamma, interleukin-12, and tumor necrosis factor alpha production by interferon-beta gene therapy. Arthritis Rheum 42(1):90–99

    Article  PubMed  CAS  Google Scholar 

  174. Hirsch MS et al (1974) Immunosuppressive effects of an interferon preparation in vivo. Transplantation 17(2):234–236

    Article  PubMed  CAS  Google Scholar 

  175. Veldhuis WB et al (2003) Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab 23(9):1060–1069

    Article  PubMed  CAS  Google Scholar 

  176. Yu M et al (1996) Interferon-beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol 64(1):91–100

    Article  PubMed  CAS  Google Scholar 

  177. Kraus J et al (2004) Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 56(2):192–205

    Article  PubMed  CAS  Google Scholar 

  178. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207(10):2053–2063

    Article  PubMed  CAS  Google Scholar 

  179. Sharma S et al (2011) Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 35(2):194–207

    Article  PubMed  CAS  Google Scholar 

  180. Henry T et al (2010) Type I IFN signaling constrains IL-17A/F secretion by gammadelta T cells during bacterial infections. J Immunol 184(7):3755–3767

    Article  PubMed  CAS  Google Scholar 

  181. Auerbuch V et al (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200(4):527–533

    Article  PubMed  CAS  Google Scholar 

  182. O’Connell RM et al (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200(4):437–445

    Article  PubMed  Google Scholar 

  183. Xin L et al (2010) Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J Immunol 184(12):7047–7056

    Article  PubMed  CAS  Google Scholar 

  184. Mayer-Barber KD et al (2011) Innate and adaptive interferons suppress IL-1 alpha and IL-1 beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35(6):1023–1034

    Article  PubMed  CAS  Google Scholar 

  185. Manca C et al (2005) Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 25(11):694–701

    Article  PubMed  CAS  Google Scholar 

  186. Berry MP et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977

    Article  PubMed  CAS  Google Scholar 

  187. Shahangian A et al (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119(7):1910–1920

    Article  PubMed  CAS  Google Scholar 

  188. Guarda G et al (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2):213–223

    Article  PubMed  CAS  Google Scholar 

  189. Worthington M, Hasenclever HF (1972) Effect of an interferon stimulator, polyinosinic: polycytidylic acid, on experimental fungus infections. Infect Immun 5(2):199–202

    PubMed  CAS  Google Scholar 

  190. Jensen J, Vazquez-Torres A, Balish E (1992) Poly (I. C)-induced interferons enhance susceptibility of SCID mice to systemic candidiasis. Infect Immun 60(11):4549–4557

    PubMed  CAS  Google Scholar 

  191. Reznikov LL et al (1998) Spontaneous and inducible cytokine responses in healthy humans receiving a single dose of IFN-alpha2b: increased production of interleukin-1 receptor antagonist and suppression of IL-1-induced IL-8. J Interferon Cytokine Res 18(10):897–903

    Article  PubMed  CAS  Google Scholar 

  192. Schindler R, Ghezzi P, Dinarello CA (1990) IL-1 induces IL-1. IV. IFN-gamma suppresses IL-1 but not lipopolysaccharide-induced transcription of IL-1. J Immunol 144(6):2216–2222

    PubMed  CAS  Google Scholar 

  193. Guarda G, So A (2010) Regulation of inflammasome activity. Immunology 130(3):329–336

    Article  PubMed  CAS  Google Scholar 

  194. Huang Y, Blatt LM, Taylor MW (1995) Type 1 interferon as an antiinflammatory agent: inhibition of lipopolysaccharide-induced interleukin-1 beta and induction of interleukin-1 receptor antagonist. J Interferon Cytokine Res 15(4):317–321

    Article  PubMed  CAS  Google Scholar 

  195. Coclet-Ninin J, Dayer JM, Burger D (1997) Interferon-beta not only inhibits interleukin-1 beta and tumor necrosis factor-alpha but stimulates interleukin-1 receptor antagonist production in human peripheral blood mononuclear cells. Eur Cytokine Netw 8(4):345–349

    PubMed  CAS  Google Scholar 

  196. Zang YC et al (2004) Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis. Mult Scler 10(5):499–506

    Article  PubMed  Google Scholar 

  197. Byrnes AA et al (2001) Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. Eur J Immunol 31(7):2026–2034

    Article  PubMed  CAS  Google Scholar 

  198. Nagai T et al (2003) Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171(10):5233–5243

    PubMed  CAS  Google Scholar 

  199. Novikov A et al (2011) Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1{beta} production in human macrophages. J Immunol 187(5):2540–2547

    Article  PubMed  CAS  Google Scholar 

  200. Radwan M et al (2010) Tyrosine kinase 2 controls IL-1 beta production at the translational level. J Immunol 185(6):3544–3553

    Article  PubMed  CAS  Google Scholar 

  201. Bellocchio S et al (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172(5):3059–3069

    PubMed  CAS  Google Scholar 

  202. Vonk AG et al (2006) Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis. J Infect Dis 193(10):1419–1426

    Article  PubMed  CAS  Google Scholar 

  203. Fremond CM et al (2007) IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179(2):1178–1189

    PubMed  CAS  Google Scholar 

  204. Mayer-Barber KD et al (2010) Caspase-1 independent IL-1 beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184(7):3326–3330

    Article  PubMed  CAS  Google Scholar 

  205. Masters SL et al (2010) Regulation of interleukin-1 beta by interferon-gamma is species specific, limited by suppressor of cytokine signalling 1 and influences interleukin-17 production. EMBO Rep 11(8):640–646

    Article  PubMed  CAS  Google Scholar 

  206. Aman MJ et al (1994) Regulation of cytokine expression by interferon-alpha in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of interleukin-1 receptor antagonist. Blood 84(12):4142–4150

    PubMed  CAS  Google Scholar 

  207. Chang EY et al (2007) Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol 178(11):6705–6709

    PubMed  CAS  Google Scholar 

  208. de Waal Malefyt R et al (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174(5):1209–1220

    Article  PubMed  Google Scholar 

  209. Fiorentino DF et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822

    PubMed  CAS  Google Scholar 

  210. Berg DJ et al (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) Th1-like responses. J Clin Invest 98(4):1010–1020

    Article  PubMed  CAS  Google Scholar 

  211. Wang H et al (2011) The role of glycogen synthase kinase 3 in regulating IFN-beta-mediated IL-10 production. J Immunol 186(2):675–684

    Article  PubMed  CAS  Google Scholar 

  212. Ziegler-Heitbrock L et al (2003) IFN-alpha induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3. J Immunol 171(1):285–290

    PubMed  CAS  Google Scholar 

  213. Wang P et al (1994) IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol 153(2):811–816

    PubMed  CAS  Google Scholar 

  214. Jenkins JK, Malyak M, Arend WP (1994) The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1 beta production in human monocytes and neutrophils. Lymphokine Cytokine Res 13(1):47–54

    PubMed  CAS  Google Scholar 

  215. Fernandes-Alnemri T et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393

    Article  PubMed  CAS  Google Scholar 

  216. Rathinam VA et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402

    Article  PubMed  CAS  Google Scholar 

  217. Zwaferink H et al (2008) IFN-beta increases listeriolysin O-induced membrane permeabilization and death of macrophages. J Immunol 180(6):4116–4123

    PubMed  CAS  Google Scholar 

  218. Veeranki S et al (2011) IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS ONE 6(10):e27040

    Article  PubMed  CAS  Google Scholar 

  219. Dienstag JL (2008) Hepatitis B virus infection. N Engl J Med 359(14):1486–1500

    Article  PubMed  CAS  Google Scholar 

  220. Foster GR (2010) Pegylated interferons for the treatment of chronic hepatitis C: pharmacological and clinical differences between peginterferon-alpha-2a and peginterferon-alpha-2b. Drugs 70(2):147–165

    Article  PubMed  CAS  Google Scholar 

  221. Vezali E et al (2011) Does interferon therapy prevent hepatocellular carcinoma in patients with chronic viral hepatitis? Clin Res Hepatol Gastroenterol 35(6–7):455–464

    Article  PubMed  CAS  Google Scholar 

  222. Yang J et al (2009) Interferon for the treatment of genital warts: a systematic review. BMC Infect Dis 9:156

    Article  PubMed  CAS  Google Scholar 

  223. Krown SE (2007) AIDS-associated Kaposi’s sarcoma: is there still a role for interferon alfa? Cytokine Growth Factor Rev 18(5–6):395–402

    Article  PubMed  CAS  Google Scholar 

  224. Kiladjian JJ, Mesa RA, Hoffman R (2011) The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood 117(18):4706–4715

    Article  PubMed  CAS  Google Scholar 

  225. Habermann TM, Rai K (2011) Historical treatments of in hairy cell leukemia, splenectomy and interferon: past and current uses. Leuk Lymphoma 52(Suppl 2):18–20

    Article  PubMed  Google Scholar 

  226. Eggermont AM et al (2012) Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer 48(2):218–25

    Google Scholar 

  227. Anderson DW et al (1992) Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 31(3):333–336

    Article  PubMed  CAS  Google Scholar 

  228. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517

    Article  PubMed  CAS  Google Scholar 

  229. Kappos L et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370(9585):389–397

    Article  PubMed  CAS  Google Scholar 

  230. Durelli L et al (1994) Chronic systemic high-dose recombinant interferon alfa-2a reduces exacerbation rate, MRI signs of disease activity, and lymphocyte interferon gamma production in relapsing-remitting multiple sclerosis. Neurology 44(3 Pt 1):406–413

    Article  PubMed  CAS  Google Scholar 

  231. Squillacote D, Martinez M, Sheremata W (1996) Natural alpha interferon in multiple sclerosis: results of three preliminary series. J Int Med Res 24(3):246–257

    PubMed  CAS  Google Scholar 

  232. Kinnunen E et al (1993) Effects of recombinant alpha-2b-interferon therapy in patients with progressive MS. Acta Neurol Scand 87(6):457–460

    Article  PubMed  CAS  Google Scholar 

  233. Larrey D et al (1989) Exacerbation of multiple sclerosis after the administration of recombinant human interferon alfa. JAMA 261(14):2065

    Article  PubMed  CAS  Google Scholar 

  234. Kataoka I et al (2002) Multiple sclerosis associated with interferon-alpha therapy for chronic myelogenous leukemia. Am J Hematol 70(2):149–153

    Article  PubMed  Google Scholar 

  235. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199

    Article  PubMed  CAS  Google Scholar 

  236. Lassmann H, Wekerle H (2006) The pathology of multiple sclerosis. In: Compston A (ed) Mc Alpine’s multiple sclerosis. Elsevier, London, pp 557–599

    Chapter  Google Scholar 

  237. Babbe H et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3):393–404

    Article  PubMed  CAS  Google Scholar 

  238. Lucchinetti C et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  PubMed  CAS  Google Scholar 

  239. Glass CK et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  PubMed  CAS  Google Scholar 

  240. Fernandez M, Montalban X, Comabella M (2010) Orchestrating innate immune responses in multiple sclerosis: molecular players. J Neuroimmunol 225(1–2):5–12

    Article  PubMed  CAS  Google Scholar 

  241. Furlan R et al (1999) Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163(5):2403–2409

    PubMed  CAS  Google Scholar 

  242. Shaw PJ et al (2010) Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol 184(9):4610–4614

    Article  PubMed  CAS  Google Scholar 

  243. Gris D et al (2010) NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185(2):974–981

    Article  PubMed  CAS  Google Scholar 

  244. Matsuki T et al (2006) Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol 18(2):399–407

    Article  PubMed  CAS  Google Scholar 

  245. Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64(1):123–132

    Article  PubMed  CAS  Google Scholar 

  246. Kaser A et al (1999) Interferon-beta 1b augments activation-induced T-cell death in multiple sclerosis patients. Lancet 353(9162):1413–1414

    Article  PubMed  CAS  Google Scholar 

  247. Christophi GP et al (2008) SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients. Lab Invest 88(3):243–255

    Article  PubMed  CAS  Google Scholar 

  248. Christophi GP et al (2009) Interferon-beta treatment in multiple sclerosis attenuates inflammatory gene expression through inducible activity of the phosphatase SHP-1. Clin Immunol 133(1):27–44

    Article  PubMed  CAS  Google Scholar 

  249. Dickensheets HL et al (1999) Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc Natl Acad Sci USA 96(19):10800–10805

    Article  PubMed  CAS  Google Scholar 

  250. Shiow LR et al (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440(7083):540–544

    Article  PubMed  CAS  Google Scholar 

  251. Kieseier BC, Archelos JJ, Hartung HP (2004) Different effects of simvastatin and interferon beta on the proteolytic activity of matrix metalloproteinases. Arch Neurol 61(6):929–932

    Article  PubMed  Google Scholar 

  252. Gilli F et al (2004) Neutralizing antibodies against IFN-beta in multiple sclerosis: antagonization of IFN-beta mediated suppression of MMPs. Brain 127(Pt 2):259–268

    Article  PubMed  Google Scholar 

  253. Muraro PA et al (2000) VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in multiple sclerosis. J Neuroimmunol 111(1–2):186–194

    Article  PubMed  CAS  Google Scholar 

  254. Muraro PA et al (2004) Decreased integrin gene expression in patients with MS responding to interferon-beta treatment. J Neuroimmunol 150(1–2):123–131

    Article  PubMed  CAS  Google Scholar 

  255. Becher B, Segal BM (2011) Th17 cytokines in autoimmune neuro-inflammation. Curr Opin Immunol 26:707–712

    Article  CAS  Google Scholar 

  256. Arnason BG (1999) Immunologic therapy of multiple sclerosis. Annu Rev Med 50:291–302

    Article  PubMed  CAS  Google Scholar 

  257. Sturzebecher S et al (2003) Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 126(Pt 6):1419–1429

    Article  PubMed  CAS  Google Scholar 

  258. Axtell RC et al (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16(4):406–412

    Article  PubMed  CAS  Google Scholar 

  259. Wang AG et al (2006) Early relapse in multiple sclerosis-associated optic neuritis following the use of interferon beta-1a in Chinese patients. Jpn J Ophthalmol 50(6):537–542

    Article  PubMed  CAS  Google Scholar 

  260. Walther EU, Hohlfeld R (1999) Multiple sclerosis: side effects of interferon beta therapy and their management. Neurology 53(8):1622–1627

    Article  PubMed  CAS  Google Scholar 

  261. The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43(4):655–661

    Article  Google Scholar 

  262. The IFNB Multiple Sclerosis Study Group, The University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45(7):1277–1285

    Article  Google Scholar 

  263. Paty DW, Li DK, UBC MS/MRI Study Group, The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43(4):662–667

    Article  PubMed  CAS  Google Scholar 

  264. Jacobs LD, The Multiple Sclerosis Collaborative Research Group (MSCRG) et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39(3):285–294

    Article  PubMed  CAS  Google Scholar 

  265. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group (1998) Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 352(9139):1498–1504

    Article  Google Scholar 

  266. European Study Group (1998) Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet 352(9139):1491–1497

    Article  Google Scholar 

  267. Reder AT et al (2010) Cross-sectional study assessing long-term safety of interferon-beta-1b for relapsing-remitting MS. Neurology 74(23):1877–1885

    Article  PubMed  CAS  Google Scholar 

  268. Tremlett HL, Oger J (2004) Elevated aminotransferases during treatment with interferon-beta for multiple sclerosis: actions and outcomes. Mult Scler 10(3):298–301

    Article  PubMed  CAS  Google Scholar 

  269. Yoshida EM et al (2001) Fulminant liver failure during interferon beta treatment of multiple sclerosis. Neurology 56(10):1416

    Article  PubMed  CAS  Google Scholar 

  270. Pulicken M et al (2006) Unmasking of autoimmune hepatitis in a patient with MS following interferon beta therapy. Neurology 66(12):1954–1955

    Article  PubMed  Google Scholar 

  271. Fragoso YD et al (2010) Severe depression, suicide attempts, and ideation during the use of interferon beta by patients with multiple sclerosis. Clin Neuropharmacol 33(6):312–316

    Article  PubMed  CAS  Google Scholar 

  272. Borras C et al (1999) Emotional state of patients with relapsing-remitting MS treated with interferon beta-1b. Neurology 52(8):1636–1639

    Article  PubMed  CAS  Google Scholar 

  273. Abdul-Ahad AK et al (1997) Incidence of antibodies to interferon-beta in patients treated with recombinant human interferon-beta 1a from mammalian cells. Cytokines Cell Mol Ther 3(1):27–32

    PubMed  CAS  Google Scholar 

  274. Rudick RA, Multiple Sclerosis Collaborative Research Group (MSCRG) et al (1998) Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Neurology 50(5):1266–1272

    Article  PubMed  CAS  Google Scholar 

  275. The IFNB Multiple Sclerosis Study Group, The University of British Columbia MS/MRI Analysis Group (1996) Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: experience during the first three years. Neurology 47(4):889–894

    Article  Google Scholar 

  276. Ross C, Danish Multiple Sclerosis Study Group et al (2000) Immunogenicity of interferon-beta in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Ann Neurol 48(5):706–712

    Article  PubMed  CAS  Google Scholar 

  277. Sorensen PS et al (2003) Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet 362(9391):1184–1191

    Article  PubMed  CAS  Google Scholar 

  278. McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3(8):e297

    Article  PubMed  CAS  Google Scholar 

  279. Hoffman HM et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305

    Article  PubMed  CAS  Google Scholar 

  280. Hawkins PN et al (2004) Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum 50(2):607–612

    Article  PubMed  CAS  Google Scholar 

  281. Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592

    Article  PubMed  CAS  Google Scholar 

  282. Lachmann HJ et al (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360(23):2416–2425

    Article  PubMed  CAS  Google Scholar 

  283. Lepore L et al (2010) Follow-up and quality of life of patients with cryopyrin-associated periodic syndromes treated with Anakinra. J Pediatr 157(2):310–315e1

    Article  PubMed  Google Scholar 

  284. Neven B et al (2010) Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 62(1):258–267

    Article  PubMed  CAS  Google Scholar 

  285. Kuemmerle-Deschner JB et al (2011) Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome. Arthritis Rheum 63(3):840–849

    Article  PubMed  Google Scholar 

  286. The International FMF Consortium (1947) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90(4):797–807

    Article  Google Scholar 

  287. French Familial Mediterranean fever Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17(1):25–31

    Article  Google Scholar 

  288. Rozenbaum M et al (1992) Decreased interleukin 1 activity released from circulating monocytes of patients with familial Mediterranean fever during in vitro stimulation by lipopolysaccharide. J Rheumatol 19(3):416–418

    PubMed  CAS  Google Scholar 

  289. Papin S et al (2007) The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14(8):1457–1466

    Article  PubMed  CAS  Google Scholar 

  290. Chae JJ et al (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34(5):755–768

    Article  PubMed  CAS  Google Scholar 

  291. Mitroulis I et al (2008) Anakinra suppresses familial Mediterranean fever crises in a colchicine-resistant patient. Neth J Med 66(11):489–491

    PubMed  CAS  Google Scholar 

  292. Calligaris L et al (2008) The efficacy of anakinra in an adolescent with colchicine-resistant familial Mediterranean fever. Eur J Pediatr 167(6):695–696

    Article  PubMed  Google Scholar 

  293. Ozen S et al (2011) Anti-interleukin 1 treatment for patients with familial Mediterranean fever resistant to colchicine. J Rheumatol 38(3):516–518

    Article  PubMed  Google Scholar 

  294. Meinzer U et al (2011) Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin Arthritis Rheum 65(2):265–271

    Article  CAS  Google Scholar 

  295. Bilginer Y, Ayaz NA, Ozen S (2010) Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behcet’s disease. Clin Rheumatol 29(2):209–210

    Article  PubMed  Google Scholar 

  296. Tweezer-Zaks N et al (2008) Interferon-alpha as a treatment modality for colchicine-resistant familial Mediterranean fever. J Rheumatol 35(7):1362–1365

    PubMed  CAS  Google Scholar 

  297. Hugot JP et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603

    Article  PubMed  CAS  Google Scholar 

  298. Ogura Y et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606

    Article  PubMed  CAS  Google Scholar 

  299. Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962

    Article  PubMed  CAS  Google Scholar 

  300. Fisher SA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40(6):710–712

    Article  PubMed  CAS  Google Scholar 

  301. Franke A et al (2008) Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40(6):713–715

    Article  PubMed  CAS  Google Scholar 

  302. Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8(6):458–466

    Article  PubMed  CAS  Google Scholar 

  303. Massey DC, Parkes M (2007) Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn’s disease. Autophagy 3(6):649–651

    PubMed  CAS  Google Scholar 

  304. Saitoh T et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268

    Article  PubMed  CAS  Google Scholar 

  305. Travassos LH et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62

    Article  PubMed  CAS  Google Scholar 

  306. Maeda S et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738

    Article  PubMed  CAS  Google Scholar 

  307. Franke A et al (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40(11):1319–1323

    Article  PubMed  CAS  Google Scholar 

  308. Glocker EO et al (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361(21):2033–2045

    Article  PubMed  CAS  Google Scholar 

  309. Oussalah A, Danese S, Peyrin-Biroulet L (2010) Efficacy of TNF antagonists beyond one year in adult and pediatric inflammatory bowel diseases: a systematic review. Curr Drug Targets 11(2):156–175

    Article  PubMed  CAS  Google Scholar 

  310. Sumer N, Palabiyikoglu M (1995) Induction of remission by interferon-alpha in patients with chronic active ulcerative colitis. Eur J Gastroenterol Hepatol 7(7):597–602

    PubMed  CAS  Google Scholar 

  311. Nikolaus S et al (2003) Interferon beta-1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut 52(9):1286–1290

    Article  PubMed  CAS  Google Scholar 

  312. Tilg H, Kaser A (2004) Type I interferons and their therapeutic role in Th2-regulated inflammatory disorders. Expert Opin Biol Ther 4(4):469–481

    Article  PubMed  CAS  Google Scholar 

  313. de Menthon M et al (2009) HLA-B51/B5 and the risk of Behcet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum 61(10):1287–1296

    Article  PubMed  CAS  Google Scholar 

  314. Remmers EF et al (2010) Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet 42(8):698–702

    Article  PubMed  CAS  Google Scholar 

  315. Yurdakul S, Yazici H (2008) Behcet’s syndrome. Best Pract Res Clin Rheumatol 22(5):793–809

    Article  PubMed  Google Scholar 

  316. Sfikakis PP et al (2007) Anti-TNF therapy in the management of Behcet’s disease—review and basis for recommendations. Rheumatology (Oxford) 46(5):736–741

    Article  CAS  Google Scholar 

  317. Melikoglu M et al (2005) Short-term trial of etanercept in Behcet’s disease: a double blind, placebo controlled study. J Rheumatol 32(1):98–105

    PubMed  CAS  Google Scholar 

  318. Botsios C et al (2008) Resistant Behcet disease responsive to anakinra. Ann Intern Med 149(4):284–286

    PubMed  Google Scholar 

  319. Kotter I et al (2004) The use of interferon alpha in Behcet disease: review of the literature. Semin Arthritis Rheum 33(5):320–335

    Article  PubMed  CAS  Google Scholar 

  320. Sheikh A, Strachan DP (2004) The hygiene theory: fact or fiction? Curr Opin Otolaryngol Head Neck Surg 12(3):232–236

    Article  PubMed  Google Scholar 

  321. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204

    Article  PubMed  CAS  Google Scholar 

  322. Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB. Proc Natl Acad Sci USA 104(3):914–919

    Article  PubMed  CAS  Google Scholar 

  323. Allakhverdi Z et al (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204(2):253–258

    Article  PubMed  CAS  Google Scholar 

  324. Rusznak C et al (2001) Interaction of cigarette smoke and house dust mite allergens on inflammatory mediator release from primary cultures of human bronchial epithelial cells. Clin Exp Allergy 31(2):226–238

    Article  PubMed  CAS  Google Scholar 

  325. Nakamura Y et al (2009) Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 206(5):1037–1046

    Article  PubMed  CAS  Google Scholar 

  326. Okada S et al (1995) Potential role of interleukin-1 in allergen-induced late asthmatic reactions in guinea pigs: suppressive effect of interleukin-1 receptor antagonist on late asthmatic reaction. J Allergy Clin Immunol 95(6):1236–1245

    Article  PubMed  CAS  Google Scholar 

  327. Schmitz N, Kurrer M, Kopf M (2003) The IL-1 receptor 1 is critical for Th2 cell type airway immune responses in a mild but not in a more severe asthma model. Eur J Immunol 33(4):991–1000

    Article  PubMed  CAS  Google Scholar 

  328. Nakae S et al (2003) IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 15(4):483–490

    Article  PubMed  CAS  Google Scholar 

  329. Johnson VJ, Yucesoy B, Luster MI (2005) Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol 116(4):851–858

    Article  PubMed  CAS  Google Scholar 

  330. Li T et al (2006) Pharmacokinetics and anti-asthmatic potential of non-parenterally administered recombinant human interleukin-1 receptor antagonist in animal models. J Pharmacol Sci 102(3):321–330

    Article  PubMed  CAS  Google Scholar 

  331. Wang CC et al (2006) Adenovirus expressing interleukin-1 receptor antagonist alleviates allergic airway inflammation in a murine model of asthma. Gene Ther 13(19):1414–1421

    Article  PubMed  CAS  Google Scholar 

  332. Idzko M et al (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919

    Article  PubMed  CAS  Google Scholar 

  333. Eisenbarth SC et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126

    Article  PubMed  CAS  Google Scholar 

  334. Kool M et al (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181(6):3755–3759

    PubMed  CAS  Google Scholar 

  335. Kool M et al (2011) An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34(4):527–540

    Article  PubMed  CAS  Google Scholar 

  336. Simon HU et al (2003) Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy 58(12):1250–1255

    Article  PubMed  CAS  Google Scholar 

  337. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  338. Apte RN et al (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25(3):387–408

    Article  PubMed  CAS  Google Scholar 

  339. Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47(19):5155–5161

    PubMed  CAS  Google Scholar 

  340. Tanaka T et al (2000) Induction of VEGF gene transcription by IL-1 beta is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes. J Mol Cell Cardiol 32(11):1955–1967

    Article  PubMed  CAS  Google Scholar 

  341. El Awad B et al (2000) Hypoxia and interleukin-1beta stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney Int 58(1):43–50

    Article  PubMed  Google Scholar 

  342. Jung YD et al (2001) Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 4(2):155–162

    Article  PubMed  CAS  Google Scholar 

  343. Voronov E, Carmi Y, Apte RN (2007) Role of IL-1-mediated inflammation in tumor angiogenesis. Adv Exp Med Biol 601:265–270

    Article  PubMed  Google Scholar 

  344. Moosig F et al (2004) IL-1RA in refractory systemic lupus erythematosus. Lupus 13(8):605–606

    Article  PubMed  CAS  Google Scholar 

  345. Ostendorf B et al (2005) Preliminary results of safety and efficacy of the interleukin 1 receptor antagonist anakinra in patients with severe lupus arthritis. Ann Rheum Dis 64(4):630–633

    Article  PubMed  CAS  Google Scholar 

  346. Voronov E et al (2006) IL-1 beta-deficient mice are resistant to induction of experimental SLE. Eur Cytokine Netw 17(2):109–116

    PubMed  CAS  Google Scholar 

  347. Davis LS, Hutcheson J, Mohan C (2011) The role of cytokines in the pathogenesis and treatment of systemic lupus erythematosus. J Interferon Cytokine Res 31(10):781–789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank F. Staehli and K. Maslowski, UNIL, Lausanne, for critical reading of the manuscript. Studies in the laboratory of Jürg Tschopp are funded by grants of the Swiss National Science Foundation, the EU Apo-Sys program, the Institute of Arthritis Research and the Louis-Jeantet Foundation.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Guarda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludigs, K., Parfenov, V., Du Pasquier, R.A. et al. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell. Mol. Life Sci. 69, 3395–3418 (2012). https://doi.org/10.1007/s00018-012-0989-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0989-2

Keywords

Navigation