Skip to main content

Advertisement

Log in

Diversity and functions of microscopic fungi: a missing component in pelagic food webs

  • Overview
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Fungi are a highly complex group of organisms of the kingdom Eumycota (i.e. the true-fungi) and other fungus-like organisms traditionally studied by mycologists, such as slime molds (Myxomycota) and oomycota (Straminopiles or Heterokonts). They constitute a significant proportion of the as yet undiscovered biota that is crucial in ecological processes and human well-being, through at least three main trophic modes: saprophytism, parasitism, or symbiosis. In addition to direct benefit (sources of antibiotics) or adverse effects (agents of disease), fungi can impact many environmental processes, particularly those associated with the decomposition of organic matter. They are present in almost all regions and climates, even under extreme conditions. However, studies have focussed mostly on economically interesting species, and knowledge of their diversity and functions is mainly restricted to soil, rhizosphere, mangrove, and lotic ecosystems. In this study, we review the diversity and potential functions of microscopic fungi in aquatic ecosystems, with focus on the pelagic environments where they often are regarded as allochthonous material, of low ecological significance for food-web processes. Recent environmental 18S rDNA surveys of microbial eukaryotes have (1) unveiled a large reservoir of unexpected fungal diversity in pelagic systems, (2) emphasized their ecological potentials for ecosystem functioning, and (3) opened new perspectives in the context of food-web dynamics. In spite of persisting methodological difficulties, we conclude that a better documentation of the diversity and quantitative and functional importance of fungi will improve our understanding of pelagic processes and biogeochemical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Raheem AM, Ali EH (2004) Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia 157:277–286

    PubMed  CAS  Google Scholar 

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimav MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    PubMed  CAS  Google Scholar 

  • Alster A, Zohary T (2007) Interactions between the bloom-forming dinoflagellate Peridinium gatunense and the chytrid fungus Phlyctochytrium sp. Hydrobiologia 578:131–139

    Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    PubMed  CAS  Google Scholar 

  • Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102

    Google Scholar 

  • Baldy V, Chauvet E, Charcosset JY, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–38

    Google Scholar 

  • Bärlocher F (1992) The ecology of aquatic hyphomycetes. Springer, Berlin & New York

    Google Scholar 

  • Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 39–59

    Google Scholar 

  • Bärlocher F (2007) Molecular approaches applied to aquatic hyphomycetes. Fungal Biol Rev 1:19–24

    Google Scholar 

  • Bärlocher F, Nikolcheva LG, Wilson KP, Williams DD (2006) Fungi in the hyporheic zone of a springbrook. Microb Ecol 52:708–715

    PubMed  Google Scholar 

  • Baschien C, Marvanova L, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwigia 83:311–352

    Google Scholar 

  • Belliveau MJR, Bärlocher F (2005) Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycol Res 109:1407–1417

    PubMed  CAS  Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hinesk HB, Lips KR, Gerry M, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036

    PubMed  CAS  Google Scholar 

  • Blackwell M, Spatafora JW (2004) Fungi and their allies. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 7–22

    Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148

    PubMed  CAS  Google Scholar 

  • Bruning K, Lingeman R, Ringelberg J (1992) Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr 37:252–260

    Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 1:1588–1600

    Google Scholar 

  • Byers JE (2009) Including parasites in food webs. Trends Parasitol 25:55–57

    PubMed  Google Scholar 

  • Canter HM (1951) Fungal parasites of the phytoplankton. II. Studies on British Chytrids. Ann Bot 15:129–156

    Google Scholar 

  • Canter HM, Heaney SI (1984) Observations on zoosporic fungi of Ceratium spp. in lakes of the English Lake District: Importance for phytoplankton population dynamics. New Phytol 97:601–612

    Google Scholar 

  • Canter HM, Lund JWG (1948) Studies on plankton parasites. I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytol 47:238–261

    Google Scholar 

  • Chen M, Chen F, Yu Y, Ji J, Kong F (2008) Genetic diversity of eukaryotic microorganisms in Lake Taihu, a large shallow subtropical Lake in China. Microb Ecol 56:572–583

    PubMed  CAS  Google Scholar 

  • Czeczuga B, Mazalska B (2000) Zoosporic aquatic fungi growing on avian excrements in various types of water bodies. Limnologica 30:323–330

    CAS  Google Scholar 

  • Czeczuga B, Godlewska A, Kozlowska M (2000) Zoosporic fungi growing on the carapaces of dead zooplankton organisms. Limnologica 30:37–43

    Google Scholar 

  • Czeczuga B, Kozlowska M, Godlewska A (2002) Zoosporic aquatic fungi growing on dead specimens of 29 freshwater crustacean species. Limnologica 32:180–193

    CAS  Google Scholar 

  • Czeczuga B, Mazalska B, Godlewska A, Muszynska E (2005) Aquatic fungi growing on dead fragments of submerged plants. Limnologica 35:283–297

    Google Scholar 

  • Damare S, Raghukumar C (2008) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 56:168–177

    PubMed  Google Scholar 

  • Damare S, Nagarajan M, Raghukumar C (2008) Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep Sea Res Part I Oceanogr Res Pap 55:670–678

    Google Scholar 

  • De Garcia V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    PubMed  Google Scholar 

  • Wit de R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758

    PubMed  Google Scholar 

  • Del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151

    CAS  Google Scholar 

  • Diez B, Pedro-Alio C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    PubMed  CAS  Google Scholar 

  • Field JI, Webster J (1983) Anaerobic survival of aquatic fungi. Trans Br Mycol Soc 81:365–369

    Google Scholar 

  • Findlay S, Tank J, Dye S, Valett HM, Mulholland PJ, McDowell WH, Johnson SL, Hamilton SK, Edmonds J, Dodds WK, Bowden WB (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66

    PubMed  CAS  Google Scholar 

  • Gadanho M, Sampaio JP (2006) Microeukaryotic diversity in the extreme environments of the Iberian Pyrite Belt: a comparison between universal and fungi-specific primer sets, temperature gradient gel electrophoresis and cloning. FEMS Microbiol Ecol 57:139–148

    PubMed  CAS  Google Scholar 

  • Gessner MO (1997) Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica 13:33–44

    Google Scholar 

  • Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek CP, Druzhinina IS (eds) The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research, vol IV. Environmental and microbial relationships, 2nd edn. Springer, Berlin, pp 301–324

    Google Scholar 

  • Gleason FH, Lilje O (2009) Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59

    Google Scholar 

  • Gleason FH, Macarthur D (2008) The chytrid epidemic revisited. Inoculum 59:1–3

    Google Scholar 

  • Gleason FH, Kagami M, Lefèvre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 2:17–25

    Google Scholar 

  • Goh TK, Hyde KD (1996) Biodiversity of freshwater fungi. J Ind Microbiol 17:328–345

    CAS  Google Scholar 

  • Goldstein S (1960) Physiology of aquatic fungi I. Nutrition of two monocentric Chytrids. J Bacteriol 80:701–707

    PubMed  CAS  Google Scholar 

  • Golubic S, Gudrun R, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    PubMed  CAS  Google Scholar 

  • Gons HJ, Ebert J, Hoogveld HL, Van den Hove L, Pel R, Takkenberg W, Woldringh CJ (2002) Observations on cyanobacterial population collapse in eutrophic lake water. Anton Leeuwenh 81:319–326

    CAS  Google Scholar 

  • Gromov B, Pljusch AV, Mamkaeva KA (1999a) Cultures of Rhizophydium spp. (Chytridiales)—parasites of chlorococalean algae. Algol Stud 95:115–123

    Google Scholar 

  • Gromov B, Pljusch AV, Mamkaeva KA (1999b) Morphology and possible host range of Rhizophydium algavorum sp. nov. (Chytridiales)—an obligate parasite of algae. Protistology 1:62–65

    Google Scholar 

  • Gulis V, Kuehn K, Suberkropp K (2006) The role of fungi in carbon and nitrogen cycles in freshwater ecosystems. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 404–435

    Google Scholar 

  • Gulis V, Suberkropp K, Rosemond AD (2008) Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams. Appl Environ Microbiol 74:1094–1101

    PubMed  CAS  Google Scholar 

  • Halemejko GZ, Chrost RJ (1986) Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake. Arch Hydrobiol 107:1–21

    CAS  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Hawksworth DL, Bull AT (2006) Marine, freshwater, and wetlands biodiversity conservation. Springer, Dordrecht

    Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    PubMed  CAS  Google Scholar 

  • Held AA (1972) Host-Parasite relations between Allomyces and Rozella—parasite penetration depends on growth response of host cell wall. Arch Microbiol 82:128–139

    Google Scholar 

  • Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 112:70–81

    PubMed  CAS  Google Scholar 

  • Holfeld H (2000) Infection of the single-celled diatom Stephanodiscus alpinus by the chytrid Zygorhizidium: parasite distribution within host population, changes in host cell size, and host-parasite size relationship. Limnol Oceanogr 45:1440–1444

    Article  Google Scholar 

  • Hoppe HG, Ducklow H, Karrasch B (1993) Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean. Mar Ecol Prog Ser 93:277–283

    Google Scholar 

  • Horn B, Lichtwardt RW (1981) Studies on the nutritional relationship of larval Aedes aegypti (Diptera: Culicidae) with Smittium culisetae (Trichomycetes). Mycologia 73:724–740

    CAS  Google Scholar 

  • Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol 40:437–453

    Google Scholar 

  • Ingold CT (1942) Aquatic hyphomycetes of decaying alder leaves. Trans Br Mycol Soc 25:339–417

    Article  Google Scholar 

  • Ingold CT (1953) Dispersal in fungi. Clarendon Press, Oxford

    Google Scholar 

  • Ingold CT (1975) An illustrated guide to aquatic and water-borne hyphomycetes (Fungi imperfecti) with notes on their biology. Freshwater Biology Association, Publication 30, London

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    PubMed  CAS  Google Scholar 

  • Johnson PTJ, Longcore JE, Stanton DE, Carnegie RB, Shields JD, Preu ER (2006) Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum laeve. Freshw Biol 51:634–648

    Google Scholar 

  • Johnson PTJ, Ives AR, Lathrop RC, Carpenter SR (2009) Long-term disease dynamics in lakes: Causes and consequences of chytrid infections in Daphnia populations. Ecology 90:132–144

    PubMed  Google Scholar 

  • Jorgensen NOG, Stepanauskas R (2009) Biomass of pelagic fungi in Baltic rivers. Hydrobiologia 623:105–112

    Google Scholar 

  • Kagami M, Van Donk E, de Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685

    Article  Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–135

    CAS  Google Scholar 

  • Kearns SG, Bärlocher F (2008) Leaf surface roughness influences colonization success of aquatic hyphomycete conidia. Fungal Ecol 1:13–18

    Google Scholar 

  • Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 61–92

    Google Scholar 

  • Komínková D, Kuehn KA, Büsing N, Steiner D, Gessner MO (2000) Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol 22:271–282

    Google Scholar 

  • Kudoh S, Takahashi M (1990) Fungal control of population-changes of the planktonic diatom Asterionella formosa in a shallow eutrophic lake. J Phycol 26:239–244

    Google Scholar 

  • Kuehn KA, Steiner D, Gessner MO (2004) Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85:2504–2518

    Google Scholar 

  • Kurtzman CP, Fell JW (2004) Yeast. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: Inventory and monitoring methods. Elsevier, Amsterdam, pp 337–342

    Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, DeLeo G, Dobson AP, Dunne JA, Johnson PT, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    PubMed  Google Scholar 

  • Lampert W, Sommer U (2007) Limnoecology—the Ecology of lakes and streams, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    PubMed  CAS  Google Scholar 

  • Lefèvre E, Bardot C, Noel C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    PubMed  Google Scholar 

  • Lefèvre E, Roussel B, Amblard C, Sime-Ngando T (2008) The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PloS One 3:e2324

    PubMed  Google Scholar 

  • Lefranc M, Thénot A, Lepère C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942

    PubMed  CAS  Google Scholar 

  • Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D (2006) Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl Environ Microbiol 74:2971–2981

    Google Scholar 

  • Lepère C, Domaizon I, Debroas D (2007) Community composition of lacustrine small eukaryotes in hyper-eutrophic conditions in relation to top-down and bottom-up factors. FEMS Microbiol Ecol 61:483–495

    PubMed  Google Scholar 

  • Lepère C, Domaizon I, Debroas D (2008) Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949

    PubMed  Google Scholar 

  • Letcher MP, Powell MJ, Viusent MC (2008) Rediscovery of an unusual chytridiaceous fungus new to the order Rhizophydiales. Mycologia 100:325–334

    PubMed  Google Scholar 

  • Libkind D, Moliné M, Sampaio PJ, van Broock M (2009) Yeasts from high-altitude lakes: Influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    PubMed  CAS  Google Scholar 

  • Lichtwardt RW, Williams MC (1999) Three Harpellales that live in one species of aquatic chironomid larva. Mycologia 91:396–399

    Google Scholar 

  • Lichtwardt RW, White MM, Cafaro MJ (2003) Freshwater Trichomycetes and their arthropod hosts. In: Tsui CKM, Hyde KD (eds) Freshwater mycology. Fungal Diversity Press, Hong Kong, pp 81–100

    Google Scholar 

  • Lilje O, Lilje E (2008) Fluctuation in Rhizophydium sp. (AUS 6) zoospore production and biomass during colony formation. Australas Mycol 27:20–32

    Google Scholar 

  • Lindley L, Stephenson SL, Spiegel FW (2007) Protostelids and myxomycetes isolated from aquatic habitats. Mycologia 99:504–509

    PubMed  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. Nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2004) Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934

    PubMed  Google Scholar 

  • López-García P, Vereshchaka A, Moreira D (2006) Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Google Scholar 

  • Lozupone CA, Klein DA (2002) Molecular and cultural assessment of chytrid and Spizellomyces populations in grassland soils. Mycologia 94:411–420

    CAS  Google Scholar 

  • Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71:6175–6184

    PubMed  CAS  Google Scholar 

  • Mansfield SD (2005) Extracellular fungal hydrolytic enzyme activity. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition. A practical guide. Springer, Dordrecht, pp 239–248

    Google Scholar 

  • Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325

    Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Google Scholar 

  • Massana R, Balague V, Guillou L, Pedros-Alio C (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    PubMed  CAS  Google Scholar 

  • Medeiros AO, Pascoal C, Graça MAS (2009) Diversity and activity of aquatic fungi under low oxygen conditions. Freshw Biol 54:142–149

    Google Scholar 

  • Mille-Lindblom C, Helmut F, Tranvik LJ (2006) Antagonism between bacteria and fungi: substrate competition and possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233–242

    Google Scholar 

  • Müller DG, Küpper FC, Küpper H (1999) Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol Res 47:217–223

    Google Scholar 

  • Munn CB (2004) Marine microbiology—ecology and applications. Bios-Garland Scientific, New York

    Google Scholar 

  • Newell SY, Fallon RD, Miller JD (1989) Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Mar Biol 101:471–481

    Google Scholar 

  • Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–49

    Google Scholar 

  • Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    PubMed  CAS  Google Scholar 

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    CAS  Google Scholar 

  • Raghukumar S (2004) The role of fungi in marine detrital processes. In: Ramaiah N (ed) Marine microbiology: Facets & opportunities. National Institute of Oceanography, Goa, pp 125–140

    Google Scholar 

  • Raja HA, Shearer CA (2008) Freshwater ascomycetes: new and noteworthy species from aquatic habitats in Florida. Mycologia 100:467–489

    PubMed  Google Scholar 

  • Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553

    PubMed  CAS  Google Scholar 

  • Roa JH, Virella C, Cafaro M (2009) First survey of arthropod gut fungi and associates from Vieques, Puerto Rico. Mycologia 101:896–903

    Google Scholar 

  • Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49:784–798

    Article  Google Scholar 

  • Ruess L, Lussenhop J (2005) Trophic interactions of fungi and animals. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 581–598

    Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Google Scholar 

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Sen B (1988) Fungal parasitism of planktonic algae in Shearwater. IV. Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz emend. Elenkin. Archiv Hydrobiol Suppl 79:177–184

    Google Scholar 

  • Shearer CA, Langsam DM, Longcore JE (2004) Fungi in freshwater habitats. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 513–531

    Google Scholar 

  • Shearer C, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Google Scholar 

  • Sigee DC (2005) Freshwater microbiology. John Wiley & Sons, Chichester, England

    Google Scholar 

  • Sime-Ngando T, Colombet J (2009) Virus et prophages dans les écosystèmes aquatiques. Can J Microbiol 55:95–109

    PubMed  CAS  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Google Scholar 

  • Sinsabaugh RL (2005) Fungal enzymes at the community scale. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 349–360

    Google Scholar 

  • Sparrow FK (1960) Aquatic phycomycetes. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Spiegel FW, Stephenson SL, Keller HW, Moore DL, Cavender JC (2004) Mycetozoans. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 547–578

    Google Scholar 

  • Stock A, Jürgens K, Bunge J, Stoeck T (2009) Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat Microb Ecol 55:267–284

    Google Scholar 

  • Suberkropp KF, Cantino EC (1973) Utilization of endogenous reserves by swimming zoospores of Blastocladiella emersonii. Arch Microbiol 89:205–221

    Google Scholar 

  • Suberkropp KF, Klug MJ (1976) Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–719

    Google Scholar 

  • Suberkropp K, Arsuffi TL, Anderson JP (1983) Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Appl Environ Microbiol 46:237–244

    PubMed  CAS  Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    PubMed  CAS  Google Scholar 

  • Tang KW, Hutalle KML, Grossart HP (2006) Microbial abundance, composition and enzymatic activity during decomposition of copepod carcasses. Aquat Microb Ecol 45:219–227

    Google Scholar 

  • Tesmer J, Schnittler M (2009) Aquatic protostelids—a study from northeastern Germany. Fungal Ecol 2:140–144

    Google Scholar 

  • Treseder KK (2005) Nutrient acquisition strategies of fungi and their relation to elevated atmospheric CO2. In: Dighton J, White JF, Oudemans P (eds) The Fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 713–731

    Google Scholar 

  • Tsui CKM, Hyde KD (2003) Freshwater mycology. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Van Donk E (1989) The role of fungal parasites in phytoplankton succession. In: Sommer U (ed) Plankton ecology. Springer, Berlin, pp 171–194

    Google Scholar 

  • Van Donk E (2006) Food web interactions in lakes. In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem. Springer, Heidelberg, pp 145–160

    Google Scholar 

  • Van Donk E (2007) Chemical information transfer in freshwater plankton. Ecol Inform 2:112–120

    Google Scholar 

  • Van Donk E, Bruning K (1992) Ecology of aquatic fungi in and on algae. In: Reisser W (ed) Algal symbiosis—plants, animals, fungi, interactions explored. Biopress Limited, Bristol, pp 567–592

    Google Scholar 

  • Van Donk E, Ringelberg J (1983) The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I (The Netherlands). Freshw Biol 13:241–251

    Google Scholar 

  • Watling R (2005) Fungal conservation: some impressions—a personal view. In: Dighton J, White JF, Oudemans P (eds) The Fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 881–896

    Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    PubMed  Google Scholar 

  • Wong MKM, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong WSW, Yuen TK (1998) Role of fungi in freshwater ecosystems. Biodivers Conserv 7:1187–1206

    Google Scholar 

  • Wood MJ (2007) Parasites entangled in food webs. Trends Parasitol 23:8–10

    PubMed  Google Scholar 

  • Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    PubMed  Google Scholar 

Download references

Acknowledgments

MJ and SR were supported by PhD Fellowships from the Grand Duché du Luxembourg (Ministry of Culture, High School, and Research) and from the French Ministère de la Recherche et de la Technologie (MRT), respectively. This study was supported by a grant from the French ANR Programme Blanc ‘DREP: Diversité et Rôles des Eumycètes dans le Pélagos’; Coordinator TSN. We appreciate the input of John Dolan and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Télesphore Sime-Ngando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jobard, M., Rasconi, S. & Sime-Ngando, T. Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat. Sci. 72, 255–268 (2010). https://doi.org/10.1007/s00027-010-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0133-z

Keywords

Navigation