Skip to main content
Log in

A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses

  • Invited review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Psoriasis is an autoimmune disease affecting 2–4% of the Caucasian population. Inflammatory processes induce the migration of interferon (IFN) γ producing Th1 lymphocytes into the skin. These play a key role in the pathogenesis of psoriasis. These Th1 lymphocytes are responsible for the pathological reactions in psoriatic skin leading to keratinocyte hyperproliferation, small vessel proliferation and neutrophilic infiltration. Antigen-presenting cells activate dermal CD4+ T lymphocytes, and various signals can support the polarization of Th1 responses. The main signal for Th1 development is interleukin (IL) 12. After binding to their receptors both IL-12 and IFN-γ promote intracellular IFN-γ production by activating signal transducer and activator of transcription (STAT) 4 or 1. STAT1 activation by IFN-γ is followed by T-bet activation, a master transcription factor for Th1 lymphocytes. In experimental models of Th1-mediated autoimmune diseases immune deviation of polarized autoreactive Th1 into anti-inflammatory Th2 responses generally improves the disease. Therefore new therapeutic approaches based on immunomodulating molecules have been developed for psoriasis, a prototypical Th1-mediated autoimmune disorder. Recently IL-4, the most effective Th2-inducing cytokine, has been shown to be safe and efficient for treating psoriasis. Improvement was associated with the induction of a Th2 phenotype of skin infiltrating lymphocytes. This review summarizes the IL-4 inducing potential of various conventional and newer systemic therapies for psoriasis. Many of these were thought to be primarily immunosuppressive. A review of the literature reveals that most of them can induce IL-4 and Th2, and that Th2 induction may be an underestimated mode of action in the therapy of Th1-mediated autoimmune disease. Further studies are needed to determine the central role of IL-4 in the control of Th1-induced autoimmune disease, namely psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

APC :

Antigen-presenting cells

DC :

Dendritic cells

EAE :

Autoimmune encephalomyelitis

FAE :

Fumaric acid ester

IFN :

Interferon

IL :

Interleukin

IκB :

Inhibitor protein of nuclear transcription factor κB

MHF :

Methylhydrogen fumarate

NF :

Nuclear factor

NFAT :

Nuclear factor of activated T cells

PASI :

Psoriasis Area and Severity Index

STAT :

Signal transducer and activator of transcription

Th :

T helper cell

TNF :

Tumor necrosis factor

References

  1. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG (1999) The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol 113:752–759

    CAS  PubMed  Google Scholar 

  2. Christophers E (2001) Psoriasis-epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320

    Article  CAS  PubMed  Google Scholar 

  3. Ghoreschi K, Rocken M (2003) Immunopathogenesis of psoriasis. JDDG (in press)

  4. Reich K, Mossner R, Konig IR, Westphal G, Ziegler A, Neumann C (2002) Promoter polymorphisms of the genes encoding tumor necrosis factor-alpha and interleukin-1beta are associated with different subtypes of psoriasis characterized by early and late disease onset. J Invest Dermatol 118:155–163

    Google Scholar 

  5. Barker JN (2001) Genetic aspects of psoriasis. Clin Exp Dermatol 26:321–325

    Article  CAS  PubMed  Google Scholar 

  6. Mueller W, Herrmann B (1979) Cyclosporin A for psoriasis. N Engl J Med 301:555

    CAS  Google Scholar 

  7. Fradin MS, Ellis CN, Voorhees JJ (1990) Efficacy of cyclosporin A in psoriasis: a summary of the United States' experience. Br J Dermatol 36:21–25

    Google Scholar 

  8. Jeffes EW III, Weinstein GD (1995) Methotrexate and other chemotherapeutic agents used to treat psoriasis. Dermatol Clin 13:875–890

    CAS  PubMed  Google Scholar 

  9. Weinshenker BG, Bass BH, Ebers GC, Rice GP (1989) Remission of psoriatic lesions with muromonab-CD3 (orthoclone OKT3) treatment. J Am Acad Dermatol 20:1132–1133

    CAS  PubMed  Google Scholar 

  10. Gottlieb AB, Lebwohl M, Shirin S, Sherr A, Gilleaudeau P, Singer G, Solodkina G, Grossman R, Gisoldi E, Phillips S, Neisler HM, Krueger JG (2000) Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: results of a pilot, multicenter, multiple-dose, placebo-controlled study. J Am Acad Dermatol 43:595–604

    Article  CAS  PubMed  Google Scholar 

  11. Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG, Gottlieb AB, Krueger JG (1995) Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med 1:442–447

    CAS  PubMed  Google Scholar 

  12. Kanamori H, Tanaka M, Kawaguchi H, Yamaji S, Fujimaki K, Tomita N, Fujisawa S, Ishigatsubo Y (2002) Resolution of psoriasis following allogeneic bone marrow transplantation for chronic myelogenous leukemia: case report and review of the literature. Am J Hematol 71:41–44

    Article  PubMed  Google Scholar 

  13. Snowden JA, Heaton DC (1997) Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: further evidence for adoptive autoimmunity. Br J Dermatol 137:130–132

    CAS  PubMed  Google Scholar 

  14. Chaudhari U, Romano P, Mulcahy LD, Dooley LT, Baker DG, Gottlieb AB (2001) Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357:1842–1847

    Article  CAS  PubMed  Google Scholar 

  15. Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B, Burge DJ (2000) Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356:385–390

    CAS  PubMed  Google Scholar 

  16. Schröder JM, Christophers E (1986) Identification of C5ades arg and an anionic neutrophil-activating peptide (ANAP) in psoriatic scales. J Invest Dermatol 87:53–58

    PubMed  Google Scholar 

  17. Mizutani H, Ohmoto Y, Mizutani T, Murata M, Shimizu M (1997) Role of increased production of monocytes TNF-alpha, IL-1beta and IL-6 in psoriasis: relation to focal infection, disease activity and responses to treatments. J Dermatol Sci 14:145–153

    Article  CAS  PubMed  Google Scholar 

  18. Gangemi S, Merendino RA, Guarneri F, Minciullo PL, DiLorenzo G, Pacor M, Cannavo SP (2003) Serum levels of interleukin-18 and s-ICAM-1 in patients affected by psoriasis: preliminary considerations. J Eur Acad Dermatol Venereol 17:42–46

    Article  CAS  PubMed  Google Scholar 

  19. Rocken M, Urban JF, Shevach EM (1992) Infection breaks T-cell tolerance. Nature 359:79–82

    Article  CAS  PubMed  Google Scholar 

  20. Prinz JC (2001) Psoriasis vulgaris-a sterile antibacterial skin reaction mediated by cross-reactive T cells? An immunological view of the pathophysiology of psoriasis. Clin Exp Dermatol 26:326–332

    Article  CAS  PubMed  Google Scholar 

  21. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  CAS  PubMed  Google Scholar 

  22. Szabo SK, Hammerberg C, Yoshida Y, Bata-Csorgo Z, Cooper KD (1998) Identification and quantitation of interferon-gamma producing T cells in psoriatic lesions: localization to both CD4+ and CD8+ subsets. J Invest Dermatol 111:1072–1078

    CAS  PubMed  Google Scholar 

  23. Fierlbeck G, Rassner G, Muller C (1990) Psoriasis induced at the injection site of recombinant interferon gamma. Results of immunohistologic investigations. Arch Dermatol 126:351–355

    Article  CAS  PubMed  Google Scholar 

  24. Lin WJ, Norris DA, Achziger M, Kotzin BL, Tomkinson B (2001) Oligoclonal expansion of intraepidermal T cells in psoriasis skin lesions. J Invest Dermatol 117:1546–1553

    Article  CAS  PubMed  Google Scholar 

  25. Vollmer S, Menssen A, Prinz JC (2001) Dominant lesional T cell receptor rearrangements persist in relapsing psoriasis but are absent from nonlesional skin: evidence for a stable antigen-specific pathogenic T cell response in psoriasis vulgaris. J Invest Dermatol 117:1296–1301

    Article  CAS  PubMed  Google Scholar 

  26. Nickoloff BJ, Wrone-Smith T (1999) Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 155:145–158

    CAS  PubMed  Google Scholar 

  27. Schon MP, Detmar M, Parker CM (1997) Murine psoriasis-like disorder induced by naive CD4+ T cells. Nat Med 3:183–188

    CAS  PubMed  Google Scholar 

  28. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1 s) and Th2 s. J Exp Med 187:129–134

    CAS  PubMed  Google Scholar 

  29. Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944

    Article  CAS  PubMed  Google Scholar 

  30. Papp K, Bissonnette R, Krueger JG, Carey W, Gratton D, Gulliver WP, Lui H, Lynde CW, Magee A, Minier D, Ouellet JP, Patel P, Shapiro J, Shear NH, Kramer S, Walicke P, Bauer R, Dedrick RL, Kim SS, White M, Garovoy MR (2001) The treatment of moderate to severe psoriasis with a new anti-CD11a monoclonal antibody. J Am Acad Dermatol 45:665–674

    Article  CAS  PubMed  Google Scholar 

  31. Ellis CN, Krueger GG (2001) Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 345:248–255

    Article  CAS  PubMed  Google Scholar 

  32. Gottlieb AB, Krueger JG, Wittkowski K, Dedrick R, Walicke PA, Garovoy M (2002) Psoriasis as a model for T-cell-mediated disease: immunobiologic and clinical effects of treatment with multiple doses of efalizumab, an anti-CD11a antibody. Arch Dermatol 138:591–600

    CAS  PubMed  Google Scholar 

  33. Asadullah K, Sterry W, Stephanek K, Jasulaitis D, Leupold M, Audring H, Volk HD, Docke WD (1998) IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Invest 101:783–794

    CAS  PubMed  Google Scholar 

  34. Ghoreschi K, Thomas P, Breit S, Dugas M, Mailhammer R, van Eden W, van der Zee R, Biedermann T, Prinz J, Mack M, Mrowietz U, Christophers E, Schlondorff D, Plewig G, Sander CA, Rocken M (2003) Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 9:40–46

    Article  CAS  PubMed  Google Scholar 

  35. Trepicchio WL, Ozawa M, Walters IB, Kikuchi T, Gilleaudeau P, Bliss JL, Schwertschlag U, Dorner AJ, Krueger JG (1999) Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J Clin Invest 104:1527–1537

    CAS  PubMed  Google Scholar 

  36. Rocken M, Urban J, Shevach EM (1994) Antigen-specific activation, tolerization, and reactivation of the interleukin 4 pathway in vivo. J Exp Med 179:1885–1893

    CAS  PubMed  Google Scholar 

  37. Breit S, Steinhoff M, Blaser K, Heusser CH, Sebald W, Levine AD, Rocken M (1996) A strict requirement of interleukin-4 for interleukin-4 induction in antigen-stimulated human memory T cells. Eur J Immunol 26:1860–1865

    CAS  PubMed  Google Scholar 

  38. Cameron MJ, Arreaza GA, Zucker P, Chensue SW, Strieter RM, Chakrabarti S, Delovitch TL (1997) IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol 159:4686–4692

    CAS  PubMed  Google Scholar 

  39. Horsfall AC, Butler DM, Marinova L, Warden PJ, Williams RO, Maini RN, Feldmann M (1997) Suppression of collagen-induced arthritis by continuous administration of IL-4. J Immunol 159:5687–5689

    CAS  PubMed  Google Scholar 

  40. Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, Shevach EM, Rocken M (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180:1961–1966

    CAS  PubMed  Google Scholar 

  41. Rocken M, Racke M, Shevach EM (1996) IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol Today 17:225–231

    Article  CAS  PubMed  Google Scholar 

  42. Cua DJ, Groux H, Hinton DR, Stohlman SA, Coffman RL (1999) Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J Exp Med 189:1005–1010

    Article  CAS  PubMed  Google Scholar 

  43. Mendel I, Shevach EM (2002) The IL-10-producing competence of Th2 cells generated in vitro is IL-4 dependent. Eur J Immunol 32:3216–3224

    Article  CAS  PubMed  Google Scholar 

  44. Honigsmann H (2001) Phototherapy for psoriasis. Clin Exp Dermatol 26:343–350

    Article  CAS  PubMed  Google Scholar 

  45. Perez A, Raab R, Chen TC, Turner A, Holick MF (1996) Safety and efficacy of oral calcitriol (1:25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol 134:1070–1078

    CAS  PubMed  Google Scholar 

  46. Saurat JH (1999) Retinoids and psoriasis: novel issues in retinoid pharmacology and implications for psoriasis treatment. J Am Acad Dermatol 41:S2–S6

    CAS  PubMed  Google Scholar 

  47. Christophers E, Mrowietz U, Henneicke HH, Farber L, Welzel D (1992) Cyclosporine in psoriasis: a multicenter dose-finding study in severe plaque psoriasis. The German Multicenter Study. J Am Acad Dermatol 26:86–90

    CAS  PubMed  Google Scholar 

  48. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747

    CAS  PubMed  Google Scholar 

  49. Reynolds NJ, Al-Daraji WI (2002) Calcineurin inhibitors and sirolimus: mechanisms of action and applications in dermatology. Clin Exp Dermatol 27:555–561

    Article  CAS  PubMed  Google Scholar 

  50. Marsland AM, Griffiths CE (2002) The macrolide immunosuppressants in dermatology: mechanisms of action. Eur J Dermatol 12:618–622

    CAS  PubMed  Google Scholar 

  51. Seitz M (1999) Molecular and cellular effects of methotrexate. Curr Opin Rheumatol 11:226–232

    Article  CAS  PubMed  Google Scholar 

  52. Schroder O, Stein J (2003) Low dose methotrexate in inflammatory bowel disease: current status and future directions. Am J Gastroenterol 98:530–537

    Article  PubMed  Google Scholar 

  53. Constantin A, Loubet-Lescoulie P, Lambert N, Yassine-Diab B, Abbal M, Mazieres B, de Preval C, Cantagrel A (1998) Antiinflammatory and immunoregulatory action of methotrexate in the treatment of rheumatoid arthritis: evidence of increased interleukin-4 and interleukin-10 gene expression demonstrated in vitro by competitive reverse transcriptase-polymerase chain reaction. Arthritis Rheum 41:48–57

    CAS  PubMed  Google Scholar 

  54. Schuerwegh AJ, van Offel JF, Bridts CH, Stevens WJ, De Clerck LS (2001) Influence of longterm therapy with methotrexate and low dose corticosteroids on type 1 and type 2 cytokine production in CD4+ and CD8+ T lymphocytes of patients with rheumatoid arthritis. J Rheumatol 28:1793–1799

    CAS  PubMed  Google Scholar 

  55. Piskin G, Heydendael VM, De Rie MA, Bos JD, Teunissen MB (2003) Cyclosporin A and methotrexate are equally effective in reducing T cell numbers in psoriatic skin lesions but have no consistent effect on IFN-gamma and IL-4 expression in psoriatic skin in situ. Arch Dermatol Res 294:559–562

    PubMed  Google Scholar 

  56. Takeuchi A, Reddy GS, Kobayashi T, Okano T, Park J, Sharma S (1998) Nuclear factor of activated T cells (NFAT) as a molecular target for 1alpha,25-dihydroxyvitamin D3-mediated effects. J Immunol 160:209–218

    CAS  PubMed  Google Scholar 

  57. Cantorna MT, Woodward WD, Hayes CE, DeLuca HF (1998) 1:25-dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines TGF-beta 1 and IL-4. J Immunol 160:5314–5319

    CAS  PubMed  Google Scholar 

  58. Overbergh L, Decallonne B, Waer M, Rutgeerts O, Valckx D, Casteels KM, Laureys J, Bouillon R, Mathieu C (2000) 1alpha,25-Dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524–543). Diabetes 49:1301–1307

    CAS  PubMed  Google Scholar 

  59. Berer A, Stockl J, Majdic O, Wagner T, Kollars M, Lechner K, Geissler K, Oehler L (2000) 1:25-Dihydroxyvitamin D (3) inhibits dendritic cell differentiation and maturation in vitro. Exp Hematol 28:575–583

    Article  CAS  PubMed  Google Scholar 

  60. D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, Sinigaglia F, Panina-Bordignon P (1998) Inhibition of IL-12 production by 1:25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 101:252–262

    CAS  PubMed  Google Scholar 

  61. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O'Garra A (2001) 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4 (+) T cells to enhance the development of Th2 cells. J Immunol 167:4974–4980

    CAS  PubMed  Google Scholar 

  62. Dam TN, Kang S, Nickoloff BJ, Voorhees JJ (1999) 1alpha,25-Dihydroxycholecalciferol and cyclosporine suppress induction and promote resolution of psoriasis in human skin grafts transplanted on to SCID mice. J Invest Dermatol 113:1082–1089

    Google Scholar 

  63. Kang S, Yi S, Griffiths CE, Fancher L, Hamilton TA, Choi JH (1998) Calcipotriene-induced improvement in psoriasis is associated with reduced interleukin-8 and increased interleukin-10 levels within lesions. Br J Dermatol 138:77–83

    Article  CAS  PubMed  Google Scholar 

  64. Zügel U, Steinmeyer A, Giesen C, Asadullah K (2002) A novel immunosuppressive 1alpha,25-dihydroxyvitamin D3 analog with reduced hypercalcemic activity. J Invest Dermatol 119:1434–1442

    Article  PubMed  Google Scholar 

  65. Mahrle G, Schulze HJ, Färber L, Weidinger G, Steigleder GK (1995) Low-dose short-term cyclosporine versus etretinate in psoriasis: improvement of skin, nail, and joint involvement. J Am Acad Dermatol 32:78–88

    CAS  PubMed  Google Scholar 

  66. Racke MK, Burnett D, Pak SH, Albert PS, Cannella B, Raine CS, McFarlin DE, Scott DE (1995) Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol 154:450–458

    CAS  PubMed  Google Scholar 

  67. Lovett-Racke AE, Racke MK (2002) Retinoic acid promotes the development of Th2-like human myelin basic protein-reactive T cells. Cell Immunol 215:54–60

    Article  CAS  PubMed  Google Scholar 

  68. Stephensen CB, Rasooly R, Jiang X, Ceddia MA, Weaver CT, Chandraratna RA, Bucy RP (2002) Vitamin A enhances in vitro Th2 development via retinoid X receptor pathway. J Immunol 168:4495–4503

    CAS  PubMed  Google Scholar 

  69. Biedermann T, Zimmermann S, Himmelrich H, Gumy A, Egeter O, Sakrauski AK, Seegmuller I, Voigt H, Launois P, Levine AD, Wagner H, Heeg K, Louis JA, Rocken M (2001) IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2:1054–1060

    Article  CAS  PubMed  Google Scholar 

  70. Storbeck K, Hölzle E, Schürer N, Lehmann P, Plewig G (1993) Narrow-band UVB (311 nm) versus conventional broad-band UVB with and without dithranol in phototherapy for psoriasis. J Am Acad Dermatol 28:227–231

    CAS  PubMed  Google Scholar 

  71. Enk CD, Sredni D, Blauvelt A, Katz SI (1995) Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. J Immunol 154:4851–4856

    CAS  PubMed  Google Scholar 

  72. Luger TA, Schwarz T, Kalden H, Scholzen T, Schwarz A, Brzoska T (1999) Role of epidermal cell-derived alpha-melanocyte stimulating hormone in ultraviolet light mediated local immunosuppression. Ann N Y Acad Sci 885:209–216

    CAS  PubMed  Google Scholar 

  73. Schmitt DA, Ullrich SE (2000) Exposure to ultraviolet radiation causes dendritic cells/macrophages to secrete immune-suppressive IL-12p40 homodimers. J Immunol 165:3162–3167

    CAS  PubMed  Google Scholar 

  74. Aragane Y, Kulms D, Luger TA, Schwarz T (1997) Down-regulation of interferon gamma-activated STAT1 by UV light. Proc Natl Acad Sci U S A 94:11490–11495

    Article  CAS  PubMed  Google Scholar 

  75. Walters IB, Ozawa M, Cardinale I, Gilleaudeau P, Trepicchio WL, Bliss J, Krueger JG (2003) Narrowband (312-nm) UV-B suppresses interferon gamma and interleukin (IL) 12 and increases IL-4 transcripts: differential regulation of cytokines at the single-cell level. Arch Dermatol 139:155–161

    CAS  PubMed  Google Scholar 

  76. Mrowietz U, Christophers E, Altmeyer P (1999) Treatment of severe psoriasis with fumaric acid esters: scientific background and guidelines for therapeutic use. The German Fumaric Acid Ester Consensus Conference. Br J Dermatol 141:424–429

    CAS  PubMed  Google Scholar 

  77. Altmeyer PJ, Matthes U, Pawlak F, Hoffmann K, Frosch PJ, Ruppert P, Wassilew SW, Horn T, Kreysel HW, Lutz G, et al (1994) Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients. J Am Acad Dermatol 30:977–981

    CAS  PubMed  Google Scholar 

  78. Mrowietz U, Christophers E, Altmeyer P (1998) Treatment of psoriasis with fumaric acid esters: results of a prospective multicentre study. German Multicentre Study. Br J Dermatol 138:456–460

    CAS  PubMed  Google Scholar 

  79. Loewe R, Holnthoner W, Groger M, Pillinger M, Gruber F, Mechtcheriakova D, Hofer E, Wolff K, Petzelbauer P (2002) Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol 168:4781–4787

    CAS  PubMed  Google Scholar 

  80. Vandermeeren M, Janssens S, Borgers M, Geysen J (1997) Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1 expression in human endothelial cells. Biochem Biophys Res Commun 234:19–23

    Article  CAS  PubMed  Google Scholar 

  81. Zhu K, Mrowietz U (2001) Inhibition of dendritic cell differentiation by fumaric acid esters. J Invest Dermatol 116:203–208

    CAS  PubMed  Google Scholar 

  82. Lehmann M, Risch K, Nizze H, Lutz J, Heemann U, Volk HD, Asadullah K (2002) Fumaric acid esters are potent immunosuppressants: inhibition of acute and chronic rejection in rat kidney transplantation models by methyl hydrogen fumarate. Arch Dermatol Res 294:399–404

    CAS  PubMed  Google Scholar 

  83. Asadullah K, Schmid H, Friedrich M, Randow F, Volk HD, Sterry W, Döcke WD (1997) Influence of monomethylfumarate on monocytic cytokine formation-explanation for adverse and therapeutic effects in psoriasis? Arch Dermatol Res 289:623–630

    Google Scholar 

  84. Jong R de, Bezemer AC, Zomerdijk TP, van de Pouw-Kraan T, Ottenhoff TH, Nibbering PH (1996) Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur J Immunol 26:2067–2074

    PubMed  Google Scholar 

  85. Litjens NH, Nibbering PH, Barrois AJ, Zomerdijk TP, Van Den Oudenrijn AC, Noz KC, Rademaker M, Van De Meide PH, Van Dissel JT, Thio B (2003) Beneficial effects of fumarate therapy in psoriasis vulgaris patients coincide with downregulation of type 1 cytokines. Br J Dermatol 148:444–451

    CAS  PubMed  Google Scholar 

  86. Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, Kollias G, Kunkel SL, Hultner L, Rocken M (2000) Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med 192:1441–1452

    Article  CAS  PubMed  Google Scholar 

  87. Oh CJ, Das KM, Gottlieb AB (2000) Treatment with anti-tumor necrosis factor alpha (TNF-alpha) monoclonal antibody dramatically decreases the clinical activity of psoriasis lesions. J Am Acad Dermatol 42:829–830

    CAS  PubMed  Google Scholar 

  88. Kalden JR (2002) Emerging role of anti-tumor necrosis factor therapy in rheumatic diseases. Arthritis Res 2:S34–S40

    Article  Google Scholar 

  89. Trepicchio WL, Bozza M, Pedneault G, Dorner AJ (1996) Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol 157:3627–3634

    CAS  PubMed  Google Scholar 

  90. Trepicchio WL, Wang L, Bozza M, Dorner AJ (1997) IL-11 regulates macrophage effector function through the inhibition of nuclear factor-kappaB. J Immunol 159:5661–5670

    CAS  PubMed  Google Scholar 

  91. Hill GR, Cooke KR, Teshima T, Crawford JM, Keith JCJ, Brinson YS, Bungard D, Ferrara JL (1998) Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest 102:115–123

    CAS  PubMed  Google Scholar 

  92. Curti A, Ratta M, Corinti S, Girolomoni G, Ricci F, Tazzari P, Siena M, Grande A, Fogli M, Tura S, Lemoli RM (2001) Interleukin-11 induces Th2 polarization of human CD4 (+) T cells. Blood 97:2758–276393

    Article  CAS  PubMed  Google Scholar 

  93. Moore KW, de Waal M, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    CAS  PubMed  Google Scholar 

  94. Reich K, Brück M, Grafe A, Vente C, Neumann C, Garbe C (1998) Treatment of psoriasis with interleukin-10. J Invest Dermatol 111:1235–1236

    Article  CAS  PubMed  Google Scholar 

  95. Kimball AB, Kawamura T, Tejura K, Boss C, Hancox AR, Vogel JC, Steinberg SM, Turner ML, Blauvelt A (2002) Clinical and immunologic assessment of patients with psoriasis in a randomized, double-blind, placebo-controlled trial using recombinant human interleukin 10. Arch Dermatol 138:1341–1346

    CAS  PubMed  Google Scholar 

  96. Friedrich M, Döcke WD, Klein A, Philipp S, Volk HD, Sterry W, Asadullah K (2002) Immunomodulation by interleukin-10 therapy decreases the incidence of relapse and prolongs the relapse-free interval in Psoriasis. J Invest Dermatol 118:672–677

    Article  CAS  PubMed  Google Scholar 

  97. Asadullah K, Friedrich M, Hanneken S, Rohrbach C, Audring H, Vergopoulos A, Ebeling M, Döcke WD, Volk HD, Sterry W (2001) Effects of systemic interleukin-10 therapy on psoriatic skin lesions: histologic, immunohistologic, and molecular biology findings. J Invest Dermatol 116:721–727

    CAS  PubMed  Google Scholar 

  98. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, Eagan M, Foster D, Haldeman BA, Hammond A, Haugen H, Jelinek L, Kelly JD, Madden K, Maurer MF, Parrish-Novak J, Prunkard D, Sexson S, Sprecher C, Waggie K, West J, Whitmore TE, Yao L, Kuechle MK, Dale BA, Chandrasekher YA (2001) Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104:9–19

    CAS  PubMed  Google Scholar 

  99. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS (2002) IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 169:4288–4297

    CAS  PubMed  Google Scholar 

  100. Rappersberger K, Komar M, Ebelin ME, Scott G, Bueche M, Burtin P, et al (2000) Oral SDZ ASM 981: safety, pharmacokinetics and efficacy in patients with moderate to severe chronic plaque psoriasis. J Invest Dermatol 114:776

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Röcken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoreschi, K., Mrowietz, U. & Röcken, M. A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses. J Mol Med 81, 471–480 (2003). https://doi.org/10.1007/s00109-003-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0460-9

Keywords

Navigation