Skip to main content
Log in

The role of NF-κB, IRF-1, and STAT-1α transcription factors in the iNOS gene induction by gliadin and IFN-γ in RAW 264.7 macrophages

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) plays an important role in the pathogenesis of celiac disease. We have examined the involvement of nuclear factor-κB (NF-κB), interferon regulatory factor-1 (IRF-1), and signal transducer and activator of transcription-1α (STAT-1α) on the synergistic induction of inducible nitric oxide synthase (iNOS) gene expression by gliadin (G) in association with interferon-γ (IFN-γ) in RAW 264.7 macrophages. We found that IFN-γ was efficient in enhancing the basal transcription of the iNOS promoter at 1, 6, and 24 h, whereas G had no effect. The G plus IFN-γ association caused an increase in iNOS promoter activity which was inhibited by pyrrolidine dithiocarbammate (PDTC) at 6 and 24 h as well as by genistein (Gen) and tyrphostine B42 (TB42) at 1 h, inhibitors of NF-κB, IRF-1, and STAT-1α activation, respectively. Similarly, the IFN-γ and G combination treatment led to a higher increase in iNOS mRNA levels at 1, 6, and 24 h compared with IFN-γ alone. Gen and TB42 inhibited iNOS mRNA levels at 1 h, whereas PDTC inhibited iNOS mRNA levels at 6 and 24 h. In addition, the synergistic induction of iNOS gene expression by G plus IFN-γ correlated with the induction of NF-κB, IRF-1, and STAT-1α/DNA binding activity and mRNA expression. In conclusion, our study, which provides evidence that the effect of G on iNOS gene transcription in IFN-γ-stimulated RAW 264.7 cells can be ascribed to all three transcription factors, may contribute to lead to new insights into the molecular mechanisms governing the inflammatory process in celiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sollid LM (2000) Molecular basis of celiac disease. Annu Rev Immunol 18:53–81

    Article  PubMed  Google Scholar 

  2. Shan L, Molberg Ø, Parrot I, Hausch F, Ferda F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    Article  PubMed  Google Scholar 

  3. Godkin A, Jewell D (1998) The pathogenesis of celiac disease. Gastroenterology 115:206–210

    Article  PubMed  Google Scholar 

  4. Auricchio S, De Ritis G, De Vincenzi M, Magazzù G, Maiuri L, Mancini E (1990) Mannan and oligomers of N-acetylglucosamine protect intestinal mucosa of celiac patients with active disease from in vitro toxicity of gliadin peptides. Gastroenterology 99:973–978

    PubMed  Google Scholar 

  5. Maiuri L, Troncone R, Mayer M, Coletta S, Picarelli A, De Vincenzi M, Pavone V, Auricchio S (1996) In vitro activities of A-gliadin related synthetic peptides: damaging affect on the atrophic coeliac mucosa and activation of mucosal immune response in the treated coeliac mucosa. Scand J Gastroenterol 31:247–253

    PubMed  Google Scholar 

  6. Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. Gastroenterology 102:330–354

    PubMed  Google Scholar 

  7. Przemioslo R, Kontakou M, Nobili V, Ciclitira PJ (1994) Detection of interferon-gamma mRNA in the mucosa of patients with coeliac disease by in situ hybridization. Gut 35:1398–1404

    PubMed  Google Scholar 

  8. Kontakou M, Przemioslo RT, Sturgess RP, Limb AG, Ciclitira PJ (1995) Expression of tumor necrosis factor-alfa, interleukin-6, and interleukin-2 mRNA in the jejunum of patients with coeliac disease. Scand J Gastroenterol 30:456–463

    PubMed  Google Scholar 

  9. Nilsen EM, Lundin KEA, Krajci P, Scott H, Sollid LM, Brandtzaeg P (1995) Gluten specific, HLA-DQ restricted T cells from celiac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon-gamma. Gut 37:766–776

    PubMed  Google Scholar 

  10. Pender SLF, Lionetti P, Murch SH, Wathan N, Mac Donald TT (1996) Proteolytic degradation of intestinal mucosa extracellular matrix after lamina propria T cell activation. Gut 39:284–290

    PubMed  Google Scholar 

  11. Beckett CG, Dell’Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1998) The detection and localization of inducible nitric oxide synthase production in the small intestine of patients with coeliac disease. Eur J Gastroenterol Hepatol 11:529–535

    Google Scholar 

  12. ter Steege J, Buurman W, Arends JW, Forget P (1997) Presence of inducible nitric oxide synthase, nitrotyrosine, CD68, and CD14 in the small intestine in celiac disease. Lab Invest 77:29–36

    PubMed  Google Scholar 

  13. Tuckovà L, Flegelová Z, Tlaskalová-Hogenová H, Zìdek Z (2000) Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol 67:312–318

    PubMed  Google Scholar 

  14. Xie QW, Whisnant R, Nathan C (1993) Promoter of mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon-γ and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

    Article  PubMed  Google Scholar 

  15. Chu SC, Wu HP, Banks TC, Eissa NT, Moss J (1995) Structural diversity in the 5′-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA. J Biol Chem 270:10625–10630

    Article  PubMed  Google Scholar 

  16. Eberhardt W, Kunz D, Hummel R, Pfeilschifter J (1996) Molecular cloning of the rat inducible nitric oxide synthase gene promoter. Biochem Biophys Res Commun 223:752–756

    Article  PubMed  Google Scholar 

  17. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263:1612–1615

    PubMed  Google Scholar 

  18. Weisz A, Oguchi S, Cicatiello L, Esumi H (1994) Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-γ and bacterial lipopolysaccharide. J Biol Chem 269:8324–8333

    PubMed  Google Scholar 

  19. Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ (1997) An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem 272:1226–1230

    Article  PubMed  Google Scholar 

  20. Kim YM, Lee BS, Yi KY, Paik SG (1997) Upstream NF-kappaB site is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-gamma plus lipopolysaccharide-induced RAW 264.7 macrophages. Biochem Biophys Res Commun 236:655–660

    Article  PubMed  Google Scholar 

  21. Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci U S A 92:3041–3045

    PubMed  Google Scholar 

  22. Decker T, Lew DJ, Mirkovitch J, Darnell JE Jr (1991) Cytoplasmic activation of GAF, an interferon-gamma-regulated DNA-binding factor. EMBO J 10:927–932

    PubMed  Google Scholar 

  23. Sims SH, Cha Y, Romine MF, Gao PQ, Gottlieb K, Deisseroth AB (1993) A novel interferon-inducible domain: structural and functional analysis of the human interferon regulatory factor-1 promoter. Mol Cell Biol 13:690–702

    PubMed  Google Scholar 

  24. Harada H, Takahashi E, Itoh S, Harada K, Hori TA, Taniguchi T (1994) Mol Cell Biol 14:1500–1509

    PubMed  Google Scholar 

  25. Garoufalis E, Kwan I, Lin R, Mustafa A, Pepin N, Roulston A, Lacoste J, Hiscott J (1994) Viral induction of the human beta interferon promoter: modulation of transcription by NF-κB/Rel proteins and interferon regulatory factors. J Virol 68:4707–4715

    PubMed  Google Scholar 

  26. Neish AS, Read MA, Thanos D, Pine R, Maniatis T, Collins T (1995) Endothelial IRF-1 cooperates with NF-κB as a transcriptional activator of vascular cell adhesion molecule 1. Mol Cell Biol 15:2558–2569

    PubMed  Google Scholar 

  27. Maiuri MC, De Stefano D, Mele G, Iovine B, Bevilacqua MA, Greco L, Auricchio S, Carnuccio R (2003) Gliadin increases iNOS gene expression in interferon-γ-stimulated RAW 264.7 cells through a mechanism involving NF-κB. Naunyn-Schmiedeberg’s Arch Pharmacol 368:63–71

    Article  Google Scholar 

  28. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648

    Article  PubMed  Google Scholar 

  29. Faure V, Hecquet C, Courtois Y, Goureau O (1999) Role of interferon regulatory factor-1 and mitogen-activated protein kinase pathways in the induction of nitric oxide synthase-2 in retinal pigmented epithelial cells. J Biol Chem 274:4794–4800

    Article  PubMed  Google Scholar 

  30. Kinugawa K, Shimizu T, Yao A, Kohmoto O, Serizawa T, Takahashi T (1997) Transcriptional regulation of inducible nitric oxide synthase in cultured neonatal rat cardiac myocytes. Circ Res 81:911–921

    PubMed  Google Scholar 

  31. D’Acquisto F, de Cristofaro F, Maiuri MC, Tajana G, Carnuccio R (2001) Protective role of nuclear factor kappaB against nitric oxide-induced apoptosis in J774 macrophages. Cell Death Differ 8:144–151

    Article  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  Google Scholar 

  33. Weisz A, Cicatiello L, Esumi H (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316:209–215

    PubMed  Google Scholar 

  34. Bevilacqua MA, Faniello MC, Quaresima B, Tiano MT, Giuliano P, Feliciello A, Avvedimento VE, Cimino F, Costanzo F (1997) A common mechanism underlying the E1A repression and the cAMP stimulation of the H ferritin transcription. J Biol Chem 272:20736–20741

    Article  PubMed  Google Scholar 

  35. Tuckovà L, Novotna J, Novak P, Flegelová Z, Kveton T, Jelinkova L, Zìdek Z, Man P, Tlaskalová-Hogenová H (2002) Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J Leukoc Biol 71:625–631

    PubMed  Google Scholar 

  36. Saura CA, Zaragoza C, Bao C, McMillan A, Lowenstein CJ (1999) Interaction of interferon regulatory factor-1 and nuclear factor-κB during activation of inducible nitric oxide synthase transcription. J Mol Biol 289:459–471

    Article  PubMed  Google Scholar 

  37. Xie Q, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide. J Biol Chem 269:4705–4708

    PubMed  Google Scholar 

  38. Kim TK, Maniatis T (1996) Regulation of interferon-gamma-activated STAT1 by the ubiquitin–proteasome pathway. Science 273:1717–1719

    PubMed  Google Scholar 

  39. Maiuri MC, De Stefano D, Mele G, Fecarotta S, Greco L, Troncone R, Carnuccio R (2003) Nuclear factor kappa B is activated in small intestinal mucosa of celiac patients. J Mol Med 81:373–379

    PubMed  Google Scholar 

  40. Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339:73–89

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Carnuccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Stefano, D., Maiuri, M.C., Iovine, B. et al. The role of NF-κB, IRF-1, and STAT-1α transcription factors in the iNOS gene induction by gliadin and IFN-γ in RAW 264.7 macrophages. J Mol Med 84, 65–74 (2006). https://doi.org/10.1007/s00109-005-0713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0713-x

Keywords

Navigation