Skip to main content

Advertisement

Log in

Pericytes: gatekeepers in tumour cell metastasis?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Tumour cells use two major routes to spread during metastasis, e.g. lymph vessels and blood vessels within or surrounding the primary tumour. The growth rate of the primary tumour often correlates with the quantity of new blood vessels that form within the tumour. However, qualitative abnormalities of the tumour vasculature profoundly affect the perfusion of the primary tumour and the escape of tumour cells into the circulation. In this paper, we review recent evidence for a novel role of the supporting mural cells in limiting blood-borne metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520

    Article  PubMed  CAS  Google Scholar 

  3. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  4. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    Article  PubMed  CAS  Google Scholar 

  5. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  PubMed  CAS  Google Scholar 

  6. Streit M, Detmar M (2003) Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 22:3172–3179

    Article  PubMed  CAS  Google Scholar 

  7. Nisato RE, Tille JC, Pepper MS (2003) Lymphangiogenesis and tumor metastasis. Thromb Haemost 90:591–597

    PubMed  CAS  Google Scholar 

  8. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  PubMed  CAS  Google Scholar 

  9. Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27:1729–1738

    Article  PubMed  CAS  Google Scholar 

  10. Wong SY, Hynes RO (2006) Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle 5:812–817

    PubMed  CAS  Google Scholar 

  11. Makinen T, Norrmen C, Petrova TV (2007) Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 64:1915–1929

    Article  PubMed  CAS  Google Scholar 

  12. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  PubMed  CAS  Google Scholar 

  13. LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P (2002) Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer 100:2–8

    Article  PubMed  CAS  Google Scholar 

  14. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    PubMed  CAS  Google Scholar 

  15. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  16. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    Article  PubMed  CAS  Google Scholar 

  17. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglykan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  PubMed  CAS  Google Scholar 

  18. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249

    Article  PubMed  CAS  Google Scholar 

  19. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464

    Article  PubMed  CAS  Google Scholar 

  20. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

    Article  Google Scholar 

  21. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    PubMed  CAS  Google Scholar 

  22. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  PubMed  CAS  Google Scholar 

  23. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    PubMed  Google Scholar 

  24. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  Google Scholar 

  25. Gerhardt H, Betsholtz C (2003) Endothelial–pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  26. Betsholtz C, Lindblom P, Gerhardt H (2005) Role of pericytes in vascular morphogenesis. EXS 94:115–125

    PubMed  Google Scholar 

  27. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598

    PubMed  CAS  Google Scholar 

  28. Hoffmann J, Feng Y, vom Hagen F, Hillenbrand A, Lin J, Erber R, Vajkoczy P, Gourzoulidou E, Waldmann H, Giannis A, Wolburg H, Shani M, Jaeger V, Weich HA, Preissner KT, Hoffmann S, Deutsch U, Hammes HP (2005) Endothelial survival factors and spatial completion, but not pericyte coverage of retinal capillaries determine vessel plasticity. FASEB J 19:2035–2036

    PubMed  CAS  Google Scholar 

  29. Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, Takagi H, Honda Y, Wiegand SJ, Yancopoulos GD, Nishikawa S (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110:1619–1628

    Article  PubMed  CAS  Google Scholar 

  30. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  31. Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U (2004) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53:1104–1110

    Article  PubMed  CAS  Google Scholar 

  32. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  PubMed  CAS  Google Scholar 

  33. Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651

    Article  PubMed  CAS  Google Scholar 

  34. Gerhardt H, Wolburg H, Redies C (2000) N-Cadherin mediates pericytic–endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479

    Article  PubMed  CAS  Google Scholar 

  35. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  36. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  PubMed  CAS  Google Scholar 

  37. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173

    Article  PubMed  CAS  Google Scholar 

  38. Nishishita T, Lin PC (2004) Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 91:584–593

    Article  PubMed  CAS  Google Scholar 

  39. Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC (2006) Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood 108:1260–1266

    Article  PubMed  CAS  Google Scholar 

  40. Garmy-Susini B, Jin H, Zhu Y, Sung RJ, Hwang R, Varner J (2005) Integrin alpha4beta1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 115:1542–1551

    Article  PubMed  CAS  Google Scholar 

  41. Lehti K, Allen E, Birkedal-Hansen H, Holmbeck K, Miyake Y, Chun TH, Weiss SJ (2005) An MT1-MMP–PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev 19:979–991

    Article  PubMed  CAS  Google Scholar 

  42. Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, Landegren U, Kjellen L, Bondjers G, Li JP, Lindahl U, Spillmann D, Betsholtz C, Gerhardt H (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21:316–331

    Article  PubMed  CAS  Google Scholar 

  43. Kurup S, Abramsson A, Li JP, Lindahl U, Kjellen L, Betsholtz C, Gerhardt H, Spillmann D (2006) Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment. Biochem Soc Trans 34:454–455

    Article  PubMed  CAS  Google Scholar 

  44. Adams RH (2003) Molecular control of arterial–venous blood vessel identity. J Anat 202:105–112

    Article  PubMed  CAS  Google Scholar 

  45. Tallquist MD, French WJ, Soriano P (2003) Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 1:E52

    Article  PubMed  Google Scholar 

  46. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840

    Article  PubMed  CAS  Google Scholar 

  47. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    Article  PubMed  CAS  Google Scholar 

  48. Kurup S, Abramsson A, Li JP, Lindahl U, Kjellen L, Betsholtz C, Gerhardt H, Spillmann D (2006) Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment. Biochem Soc Trans 34:454–455

    Article  PubMed  CAS  Google Scholar 

  49. Sanderson RD, Yang Y, Kelly T, MacLeod V, Dai Y, Theus A (2005) Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J Cell Biochem 96:897–905

    Article  PubMed  CAS  Google Scholar 

  50. Chantrain CF, Henriet P, Jodele S, Emonard H, Feron O, Courtoy PJ, DeClerck YA, Marbaix E (2006) Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer 42:310–318

    Article  PubMed  CAS  Google Scholar 

  51. Hakansson J, Xian X, He L, Stahlberg A, Nelander S, Samuelsson T, Kubista M, Semb H (2005) Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell–matrix adhesion. Tumour Biol 26:103–112

    Article  PubMed  CAS  Google Scholar 

  52. Imanishi Y, Hu B, Jarzynka MJ, Guo P, Elishaev E, Bar-Joseph I, Cheng SY (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263

    Article  PubMed  CAS  Google Scholar 

  53. Bussolati B, Grange C, Bruno S, Buttiglieri S, Deregibus MC, Tei L, Aime S, Camussi G (2006) Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp Cell Res 312:913–924

    Article  PubMed  CAS  Google Scholar 

  54. Geninatti Crich S, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66:9196–9201

    Article  PubMed  CAS  Google Scholar 

  55. Blaheta RA, Daher FH, Michaelis M, Hasenberg C, Weich EM, Jonas D, Kotchetkov R, Doerr HW, Cinatl J Jr (2006) Chemoresistance induces enhanced adhesion and transendothelial penetration of neuroblastoma cells by down-regulating NCAM surface expression. BMC Cancer 6:294

    Article  PubMed  Google Scholar 

  56. Blaheta RA, Hundemer M, Mayer G, Vogel JU, Kornhuber B, Cinatl J, Markus BH, Driever PH, Cinatl J Jr. (2002) Expression level of neural cell adhesion molecule (NCAM) inversely correlates with the ability of neuroblastoma cells to adhere to endothelium in vitro. Cell Commun Adhes 9:131–147

    Article  PubMed  CAS  Google Scholar 

  57. Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    Article  PubMed  CAS  Google Scholar 

  58. Hynes RO (2003) Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants—or both? Cell 113:821–823

    Article  PubMed  CAS  Google Scholar 

  59. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  60. Imao T, Egawa M, Takashima H, Koshida K, Namiki M (2004) Inverse correlation of microvessel density with metastasis and prognosis in renal cell carcinoma. Int J Urol 11:948–953

    Article  PubMed  Google Scholar 

  61. Fukata S, Inoue K, Kamada M, Kawada C, Furihata M, Ohtsuki Y, Shuin T (2005) Levels of angiogenesis and expression of angiogenesis-related genes are prognostic for organ-specific metastasis of renal cell carcinoma. Cancer 103:931–942

    Article  PubMed  CAS  Google Scholar 

  62. Wilson GD (2007) Hypoxia and prognosis: the oxygen tension mounts. Front Biosci 12:3502–3518

    Article  PubMed  CAS  Google Scholar 

  63. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  PubMed  CAS  Google Scholar 

  64. Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone HJ, Debus J, Lipson KE, Abdollahi A (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65:3643–3655

    Article  PubMed  CAS  Google Scholar 

  65. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  66. Jubb AM, Oates AJ, Holden S, Koeppen H (2006) Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 6:626–635

    Article  PubMed  CAS  Google Scholar 

  67. Shaheen RM, Tseng WW, Davis DW, Liu W, Reinmuth N, Vellagas R, Wieczorek AA, Ogura Y, McConkey DJ, Drazan KE, Bucana CD, McMahon G, Ellis LM (2001) Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res 61:1464–1468

    PubMed  CAS  Google Scholar 

  68. Holash J, Thurston G, Rudge JS, Yancopoulos GD, Adjei AA, Bergers G, Pytowski B, Pegram M, Gordon MS (2006) Inhibitors of growth factor receptors, signaling pathways and angiogenesis as therapeutic molecular agents. Cancer Metastasis Rev 25:243–252

    Article  PubMed  Google Scholar 

  69. Pietras K, Rubin K, Sjoblom T, Buchdunger E, Sjoquist M, Heldin CH, Ostman A (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62:5476–5484

    PubMed  CAS  Google Scholar 

  70. Pietras K, Ostman A, Sjoquist M, Buchdunger E, Reed RK, Heldin CH, Rubin K (2001) Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 61:2929–2934

    PubMed  CAS  Google Scholar 

  71. Baranowska-Kortylewicz J, Abe M, Pietras K, Kortylewicz ZP, Kurizaki T, Nearman J, Paulsson J, Mosley RL, Enke CA, Ostman A (2005) Effect of platelet-derived growth factor receptor-beta inhibition with STI571 on radioimmunotherapy. Cancer Res 65:7824–7831

    PubMed  CAS  Google Scholar 

  72. Heuchel R, Berg A, Tallquist M, Ahlen K, Reed RK, Rubin K, Claesson-Welsh L, Heldin CH, Soriano P (1999) Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3¢ kinase signaling. Proc Natl Acad Sci USA 96:11410–11415

    Article  PubMed  CAS  Google Scholar 

  73. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  PubMed  CAS  Google Scholar 

  74. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A (2003) PDGF receptors as cancer drug targets. Cancer Cell 3:439–443

    Article  PubMed  CAS  Google Scholar 

  75. Cao Y (2005) Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle 4:228–230

    PubMed  CAS  Google Scholar 

  76. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, Cao Y (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333–345

    Article  PubMed  CAS  Google Scholar 

  77. Tomlinson IP, Strickland JE, Lee AS, Bromley L, Evans MF, Morton J, McGee JO (1995) Loss of heterozygosity on chromosome 11 q in breast cancer. J Clin Pathol 48:424–428

    Article  PubMed  CAS  Google Scholar 

  78. Fogar P, Basso D, Pasquali C, De Paoli M, Sperti C, Roveroni G, Pedrazzoli S, Plebani M (1997) Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res 17:1227–1230

    PubMed  CAS  Google Scholar 

  79. Roesler J, Srivatsan E, Moatamed F, Peters J, Livingston EH (1997) Tumor suppressor activity of neural cell adhesion molecule in colon carcinoma. Am J Surg 174:251–257

    Article  PubMed  CAS  Google Scholar 

  80. Tezel E, Kawase Y, Takeda S, Oshima K, Nakao A (2001) Expression of neural cell adhesion molecule in pancreatic cancer. Pancreas 22:122–125

    Article  PubMed  CAS  Google Scholar 

  81. Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellstrom M, Lindahl P, Betsholtz C (2006) Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. Faseb J 20:1703–1705

    Article  PubMed  CAS  Google Scholar 

  82. Bondjers C, Kalen M, Hellstrom M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162:721–729

    PubMed  CAS  Google Scholar 

  83. Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. Faseb J 17:440–442

    PubMed  CAS  Google Scholar 

  84. Perl AK, Dahl U, Wilgenbus P, Cremer H, Semb H, Christofori G (1999) Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic beta tumor cells. Nat Med 5:286–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Laura Mulcahy and Dr. Erik Sahai for proof reading and critical comments. H.G is supported by Cancer Research UK. H.S. acknowledges previous support from the Swedish Cancer Foundation. We wish to apologize to authors of important work not cited here for reasons of space limitation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Gerhardt or Henrik Semb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhardt, H., Semb, H. Pericytes: gatekeepers in tumour cell metastasis?. J Mol Med 86, 135–144 (2008). https://doi.org/10.1007/s00109-007-0258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0258-2

Keywords

Navigation