Skip to main content
Log in

Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Galectins have recently emerged as central regulators of the immune system. We have previously demonstrated that carbohydrate-dependent binding of galectin-2 induces apoptosis in activated T cells. Here, we investigate the potential therapeutic effect of galectin-2 in experimental colitis. Galectin-2 expression and its binding profile were determined by immunohistochemistry. Acute and chronic colitis was induced by dextran sodium sulfate administration and in a T-cell transfer colitis model. Apoptosis was assessed by TdT-mediated dUTP-biotin nick-end labeling, and cytokine secretion was determined by cytometric bead array. We show that galectin-2 was constitutively expressed mainly in the epithelial compartment of the mouse intestine and bind to lamina propria mononuclear cells. During colitis, galectin-2 expression was reduced, but could be restored to normal levels by immunosuppressive treatment. Galectin-2 treatment induced apoptosis of mucosal T cells and thus ameliorated acute and chronic dextran-sodium-sulfate-induced colitis and in a T-helper-cell 1-driven model of antigen-specific transfer colitis. Furthermore, the pro-inflammatory cytokine release was inhibited by galectin-2 treatment. In preliminary toxicity studies, galectin-2 was well tolerated. Our study provides evidence that galectin-2 induces apoptosis in vivo and ameliorates acute and chronic murine colitis. Furthermore, galectin-2 has no significant toxicity over a broad dose range, suggesting that it may serve as a new therapeutic agent in the treatment of inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205

    Article  PubMed  CAS  Google Scholar 

  2. Fiocchi C, Hilfiker ML, Youngman KR, Doerder NC, Finke JH (1984) Interleukin 2 activity of human intestinal mucosa mononuclear cells. Decreased levels in inflammatory bowel disease. Gastroenterology 86:734–42

    PubMed  CAS  Google Scholar 

  3. Fuss IJ, Neurath M, Boirivant M, Klein JS, de La MC, Strong SA, Fiocchi C, Strober W (1996) Disparate CD4 + lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157:1261–70

    PubMed  CAS  Google Scholar 

  4. Ueyama H, Kiyohara T, Sawada N, Isozaki K, Kitamura S, Kondo S, Miyagawa J, Kanayama S, Shinomura Y, Ishikawa H, Ohtani T, Nezu R, Nagata S, Matsuzawa Y (1998) High Fas ligand expression on lymphocytes in lesions of ulcerative colitis. Gut 43:48–55

    Article  PubMed  CAS  Google Scholar 

  5. Sturm A, Leite AZ, Danese S, Krivacic KA, West GA, Mohr S, Jacobberger JW, Fiocchi C (2004) Divergent cell cycle kinetics underlie the distinct functional capacity of mucosal T cells in Crohn’s disease and ulcerative colitis. Gut 53:1624–31

    Article  PubMed  CAS  Google Scholar 

  6. Ina K, Itoh J, Fukushima K, Kusugami K, Yamaguchi T, Kyokane K, Imada A, Binion DG, Musso A, West GA, Dobrea GM, McCormick TS, Lapetina EG, Levine AD, Ottaway CA, Fiocchi C (1999) Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/Bax mucosal imbalance. J Immunol 163:1081–90

    PubMed  CAS  Google Scholar 

  7. ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ (2002) Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 50:206–11

    Article  PubMed  CAS  Google Scholar 

  8. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR, de Villiers WJ, Present D, Sands BE, Colombel JF (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353:2462–76

    Article  PubMed  CAS  Google Scholar 

  9. Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, Kamm MA, Korzenik JR, Lashner BA, Onken JE, Rachmilewitz D, Rutgeerts P, Wild G, Wolf DC, Marsters PA, Travers SB, Blank MA, van Deventer SJ (2004) Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 350:876–85

    Article  PubMed  CAS  Google Scholar 

  10. Rabinovich GA, Baum LG, Tinari N, Paganelli R, Natoli C, Liu FT, Iacobelli S (2002) Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 23:313–20

    Article  PubMed  CAS  Google Scholar 

  11. Ilarregui JM, Bianco GA, Toscano MA, Rabinovich GA (2005) The coming of age of galectins as immunomodulatory agents: impact of these carbohydrate binding proteins in T cell physiology and chronic inflammatory disorders. Ann Rheum Dis 64(Suppl 4):96–103

    Google Scholar 

  12. Liu FT (2000) Galectins: a new family of regulators of inflammation. Clin Immunol 97:79–88

    Article  PubMed  CAS  Google Scholar 

  13. Rabinovich GA (1999) Galectins: an evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy. Cell Death Differ 6:711–21

    Article  PubMed  CAS  Google Scholar 

  14. Sturm A, Lensch M, Andre S, Kaltner H, Wiedenmann B, Rosewicz S, Dignass AU, Gabius HJ (2004) Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 173:3825–37

    PubMed  CAS  Google Scholar 

  15. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69:238–49

    PubMed  CAS  Google Scholar 

  16. Hoffmann JC, Pawlowski NN, Kuhl AA, Hohne W, Zeitz M (2002) Animal models of inflammatory bowel disease: an overview. Pathobiology 70:121–30

    Article  PubMed  Google Scholar 

  17. Rachmilewitz D, Karmeli F, Takabayashi K, Hayashi T, Leider-Trejo L, Lee J, Leoni LM, Raz E (2002) Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 122:1428–41

    Article  PubMed  CAS  Google Scholar 

  18. Obermeier F, Schwarz H, Dunger N, Strauch UG, Grunwald N, Scholmerich J, Falk W (2003) OX40/OX40L interaction induces the expression of CXCR5 and contributes to chronic colitis induced by dextran sulfate sodium in mice. Eur J Immunol 33:3265–74

    Article  PubMed  CAS  Google Scholar 

  19. Grabig A, Paclik D, Guzy C, Dankof A, Baumgart DC, Erckenbrecht J, Raupach B, Sonnenborn U, Eckert J, Schumann RR, Wiedenmann B, Dignass AU, Sturm A (2006) Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2- and toll-like receptor 4-dependent pathways. Infect Immun 74:4075–82

    Article  PubMed  CAS  Google Scholar 

  20. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–91

    Article  PubMed  CAS  Google Scholar 

  21. Holzlohner P, Hoffmann U, Loddenkemper C, Hayford C, Heilmann K, Wittig B (2007) Antigen specific colitis abrogated by antigen feeding in a new mouse model. Gastroenterology 132:A571

    Google Scholar 

  22. Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of Cd4+Cd8+Tcrlo thymocytes in vivo. Science 250:1720–1723

    Article  PubMed  CAS  Google Scholar 

  23. Asseman C, Read S, Powrie F (2003) Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J Immunol 171:971–78

    PubMed  CAS  Google Scholar 

  24. Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S, Schutz M, Bartsch B, Holtmann M, Becker C, Strand D, Czaja J, Schlaak JF, Lehr HA, Autschbach F, Schurmann G, Nishimoto N, Yoshizaki K, Ito H, Kishimoto T, Galle PR, Rose-John S, Neurath MF (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med 6:583–88

    Article  PubMed  CAS  Google Scholar 

  25. Podolsky DK (1991) Inflammatory bowel-disease.1. N Engl J Med 325:928–37

    Article  PubMed  CAS  Google Scholar 

  26. Targan SR, Deem RL, Liu M, Wang S, Nel A (1995) Definition of a lamina propria T cell responsive state. Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J Immunol 154:664–75

    PubMed  CAS  Google Scholar 

  27. Neurath MF, Mudter J (2006) Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut 56:293–303

    PubMed  Google Scholar 

  28. Shanahan F, Nally K, O'Sullivan GC (2000) Turning on T-cell death and turning off Crohn’s disease. Gastroenterology 119:1166–68

    Article  PubMed  CAS  Google Scholar 

  29. Gabius HJ (2006) Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 26:43–80

    PubMed  CAS  Google Scholar 

  30. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    Article  PubMed  CAS  Google Scholar 

  31. Nio J, Kon Y, Iwanaga T (2005) Differential cellular expression of galectin family mRNAs in the epithelial cells of the mouse digestive tract. J Histochem Cytochem 53:1323–34

    Article  PubMed  CAS  Google Scholar 

  32. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, Rabinovich GA, Morelli A (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124:1381–94

    Article  PubMed  CAS  Google Scholar 

  33. Harjacek M, Diaz-Cano S, De Miguel M, Wolfe H, Maldonado CA, Rabinovich GA (2001) Expression of galectins-1 and -3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis. J Rheumatol 28:1914–22

    PubMed  CAS  Google Scholar 

  34. Ogata H, Matsui T, Nakamura M, Iida M, Takazoe M, Suzuki Y, Hibi T (2006) A randomised dose finding study of oral tacrolimus (FK506) therapy in refractory ulcerative colitis. Gut 55:1255–62

    Article  PubMed  CAS  Google Scholar 

  35. Baumgart DC, Pintoffl JP, Sturm A, Wiedenmann B, Dignass AU (2006) Tacrolimus is safe and effective in patients with severe steroid-refractory or steroid-dependent inflammatory bowel disease—a long-term follow-up. Am J Gastroenterol 101:1048–56

    Article  PubMed  CAS  Google Scholar 

  36. van Dieren JM, Kuipers EJ, Samsom JN, Nieuwenhuis EE, van der Woude CJ (2006) Revisiting the immunomodulators tacrolimus, methotrexate, and mycophenolate mofetil: their mechanisms of action and role in the treatment of IBD. Inflamm Bowel Dis 12:311–27

    Article  PubMed  Google Scholar 

  37. Strober W, Fuss I, Mannon PJ (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–21

    Article  PubMed  CAS  Google Scholar 

  38. Mudter J, Neurath MF (2007) Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut 56:293–303

    Article  PubMed  CAS  Google Scholar 

  39. Papadakis KA, Targan SR (2000) Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 51:289–98

    Article  PubMed  CAS  Google Scholar 

  40. Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, Neurath MF, Strober W, Mannon PJ (2006) Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis 12:9–15

    Article  PubMed  Google Scholar 

  41. Mudter J, Neurath MF (2007) Il-6 signaling in inflammatory bowel disease: Pathophysiological role and clinical relevance. Inflamm Bowel Dis 13:1016–23

    Article  PubMed  Google Scholar 

  42. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K, Shimoyama T, Kishimoto T (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126:989–96

    Article  PubMed  CAS  Google Scholar 

  43. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann Rev Immunol 25:821–52

    Article  CAS  Google Scholar 

  44. Bettelli E, Carrier YJ, Gao WD, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature 441:235–38

    Article  PubMed  CAS  Google Scholar 

  45. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–40

    Article  PubMed  CAS  Google Scholar 

  46. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–57

    Article  PubMed  CAS  Google Scholar 

  47. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, Mckenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316

    Article  PubMed  CAS  Google Scholar 

  48. Elson CO, Cong Y, Weaver CT, Schoeb TR, McClanahan TK, Fick RB, Kastelein RA (2007) Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132:2359–70

    Article  PubMed  CAS  Google Scholar 

  49. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–42

    Article  PubMed  CAS  Google Scholar 

  50. Van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I, van Montfrans C, Hommes DW, Peppelenbosch MP, van Deventer SJ (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124:1774–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Annett Rexin for technical assistance, Christoph Loddenkemper for histological analysis, and Christian Müller for biochemical analysis.

Competing interests

None.

Funding

This work was supported by a grant from the Broad Medical Research Program of The Eli and Edythe Broad Foundation, the Bundesministerium für Forschung and Technologie (BMFT; AS), and by the Forschungsförderung of the Charité, Universitätsmedizin Berlin (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Sturm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paclik, D., Berndt, U., Guzy, C. et al. Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med 86, 1395–1406 (2008). https://doi.org/10.1007/s00109-007-0290-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0290-2

Keywords

Navigation