Skip to main content

Advertisement

Log in

Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The factors and signaling pathways controlling pluripotent human cell properties, both embryonic and induced, have not been fully investigated. Failure to account for functional heterogeneity within human embryonic stem cell (hESC) cultures has led to inconclusive results in previous work examining extrinsic influences governing hESC fate (self renewal vs. differentiation vs. death). Here, we attempt to reconcile these inconsistencies with recent reports demonstrating that an autologously produced in vitro niche regulates hESCs. Moreover, we focus on the reciprocal paracrine signals within the in vitro hESC niche allowing for the maintenance and/or expansion of the hESC colony-initiating cell (CIC). Based on this, it is clear that separation of hESC-CICs, apart from their differentiated derivatives, will be essential in future studies involving their molecular regulation. Understanding how extrinsic factors control hESC self-renewal and differentiation will allow us to culture and differentiate these pluripotent cells with higher efficiency. This knowledge will be essential for clinical applications using human pluripotent cells in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  3. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  PubMed  CAS  Google Scholar 

  4. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  5. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  CAS  Google Scholar 

  6. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  7. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  9. Chase LG, Firpo MT (2007) Development of serum-free culture systems for human embryonic stem cells. Curr Opin Chem Biol 11:367–372

    Article  PubMed  CAS  Google Scholar 

  10. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O, Jaconi M, Feki A (2007) Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 17:682–688

    Article  PubMed  CAS  Google Scholar 

  11. Skottman H, Narkilahti S, Hovatta O (2007) Challenges and approaches to the culture of pluripotent human embryonic stem cells. Regen Med 2:265–273

    Article  PubMed  Google Scholar 

  12. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  PubMed  CAS  Google Scholar 

  13. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  PubMed  CAS  Google Scholar 

  14. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  PubMed  CAS  Google Scholar 

  15. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444(7118):481–485

    Article  PubMed  CAS  Google Scholar 

  16. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021

    Article  PubMed  CAS  Google Scholar 

  17. Stewart MH, Bosse M, Chadwick K, Menendez P, Bendall SC, Bhatia M (2006) Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods 3:807–815

    Article  PubMed  CAS  Google Scholar 

  18. Greber B, Lehrach H, Adjaye J (2007) Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464

    Article  PubMed  CAS  Google Scholar 

  19. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  PubMed  CAS  Google Scholar 

  20. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21

    Article  PubMed  CAS  Google Scholar 

  21. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  PubMed  CAS  Google Scholar 

  22. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  23. Kiger AA, White-Cooper H, Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407:750–754

    Article  PubMed  CAS  Google Scholar 

  24. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330

    Article  PubMed  CAS  Google Scholar 

  25. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660–663

    Article  PubMed  CAS  Google Scholar 

  26. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  27. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  28. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  29. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458

    Article  PubMed  CAS  Google Scholar 

  30. Lee JB, Song JM, Lee JE, Park JH, Kim SJ, Kang SM, Kwon JN, Kim MK, Roh SI, Yoon HS (2004) Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction 128:727–735

    Article  PubMed  CAS  Google Scholar 

  31. Stojkovic P, Lako M, Stewart R, Przyborski S, Armstrong L, Evans J, Murdoch A, Strachan T, Stojkovic M (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314

    Article  PubMed  CAS  Google Scholar 

  32. Yoo SJ, Yoon BS, Kim JM, Song JM, Roh S, You S, Yoon HS (2005) Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp Mol Med 37:399–407

    PubMed  CAS  Google Scholar 

  33. Prowse AB, McQuade LR, Bryant KJ, Marcal H, Gray PP (2007) Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res 6:3796–3807

    Article  PubMed  CAS  Google Scholar 

  34. Lim JW, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2:1187–1203

    Article  PubMed  CAS  Google Scholar 

  35. Prowse AB, McQuade LR, Bryant KJ, Van Dyk DD, Tuch BE, Gray PP (2005) A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 5(4):978–989

    Article  PubMed  CAS  Google Scholar 

  36. Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  PubMed  CAS  Google Scholar 

  37. Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Dawud RA, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14:3129–3140

    Article  PubMed  CAS  Google Scholar 

  38. Mantel C, Guo Y, Lee MR, Kim MK, Han MK, Shibayama H, Fukuda S, Yoder MC, Pelus LM, Kim KS, Broxmeyer HE (2007) Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109:4518–4527

    Article  PubMed  CAS  Google Scholar 

  39. Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209:883–893

    Article  PubMed  CAS  Google Scholar 

  40. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509

    Article  PubMed  CAS  Google Scholar 

  41. Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H (2007) MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75(4):299–307

    Article  PubMed  CAS  Google Scholar 

  42. Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110(12):4111–4119

    Article  PubMed  CAS  Google Scholar 

  43. Xiao L, Yuan X, Sharkis SJ (2006) Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24:1476–1486

    Article  PubMed  CAS  Google Scholar 

  44. Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 15:1894–1913

    Article  PubMed  CAS  Google Scholar 

  45. Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501

    Article  PubMed  CAS  Google Scholar 

  46. Liu N, Lu M, Tian X, Han Z (2007) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol 211:279–286

    Article  PubMed  CAS  Google Scholar 

  47. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6:872–884

    Article  PubMed  CAS  Google Scholar 

  48. Rao M (2004) Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 275:269–286

    Article  PubMed  CAS  Google Scholar 

  49. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS (2004) Differences between human and mouse embryonic stem cells. Dev Biol 269:360–380

    Article  PubMed  CAS  Google Scholar 

  50. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79

    Article  PubMed  CAS  Google Scholar 

  51. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  PubMed  CAS  Google Scholar 

  52. Daheron L, Opitz SL, Zaehres H, Lensch WM, Andrews PW, Itskovitz-Eldor J, Daley GQ (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770–778

    Article  PubMed  CAS  Google Scholar 

  53. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    Article  PubMed  CAS  Google Scholar 

  54. Gerami-Naini B, Dovzhenko OV, Durning M, Wegner FH, Thomson JA, Golos TG (2004) Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology 145:1517–1524

    Article  PubMed  CAS  Google Scholar 

  55. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    Article  PubMed  CAS  Google Scholar 

  56. Skottman H, Hovatta O (2006) Culture conditions for human embryonic stem cells. Reproduction 132:691–698

    Article  PubMed  CAS  Google Scholar 

  57. Amit M, Itskovitz-Eldor J (2006) Sources, derivation, and culture of human embryonic stem cells. Semin Reprod Med 24:298–303

    Article  PubMed  CAS  Google Scholar 

  58. Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H (2007) Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod 22(5):1231–1238

    Article  PubMed  CAS  Google Scholar 

  59. Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902

    Article  PubMed  CAS  Google Scholar 

  60. Herszfeld D, Wolvetang E, Langton-Bunker E, Chung TL, Filipczyk AA, Houssami S, Jamshidi P, Koh K, Laslett AL, Michalska A, Nguyen L, Reubinoff BE, Tellis I, Auerbach JM, Ording CJ, Looijenga LH, Pera MF (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 24:351–357

    Article  PubMed  CAS  Google Scholar 

  61. Rho JY, Yu K, Han JS, Chae JI, Koo DB, Yoon HS, Moon SY, Lee KK, Han YM (2006) Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells. Hum Reprod 21:405–412

    Article  PubMed  CAS  Google Scholar 

  62. Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks JD, Andrews PW, Brown PO, Thomson JA (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 100:13350–13355

    Article  PubMed  CAS  Google Scholar 

  63. Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22:707–716

    Article  PubMed  Google Scholar 

  64. James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282

    Article  PubMed  CAS  Google Scholar 

  65. Vallier L, Pedersen RA (2005) Human embryonic stem cells: an in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev 1:119–130

    Article  PubMed  CAS  Google Scholar 

  66. Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. Embo J 26(22):4744–4755

    Article  PubMed  CAS  Google Scholar 

  67. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 7:1191–1204

    Article  PubMed  CAS  Google Scholar 

  68. Besser D (2004) Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J Biol Chem 279:45076–45084

    Article  PubMed  CAS  Google Scholar 

  69. Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 275:403–421

    Article  PubMed  CAS  Google Scholar 

  70. Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, Hayek A (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495

    Article  PubMed  CAS  Google Scholar 

  71. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  PubMed  CAS  Google Scholar 

  72. Wang L, Li L, Menendez P, Cerdan C, Bhatia M (2005) Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 105:4598–4603

    Article  PubMed  CAS  Google Scholar 

  73. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  PubMed  CAS  Google Scholar 

  74. Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, Meng S, Feng J, Miao C, Ding M, Li D, Deng H (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 330:934–942

    Article  PubMed  CAS  Google Scholar 

  75. Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hampl A (2005) Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23:1200–1211

    Article  PubMed  CAS  Google Scholar 

  76. Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE, Lee Y (2005) Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev 14:395–401

    Article  PubMed  CAS  Google Scholar 

  77. Xie T, Spradling AC (1998) decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94:251–260

    Article  PubMed  CAS  Google Scholar 

  78. Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549

    Article  PubMed  CAS  Google Scholar 

  79. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    Article  PubMed  CAS  Google Scholar 

  80. Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008) FGF4 And its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self renewal. Stem Cells 26(3):767–774

    Article  PubMed  CAS  Google Scholar 

  81. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C, Cocco L (2006) Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20:911–928

    Article  PubMed  CAS  Google Scholar 

  82. Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24(3):344–350

    Article  PubMed  CAS  Google Scholar 

  83. McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38

    Article  PubMed  CAS  Google Scholar 

  84. Sidhu KS, Tuch BE (2006) Derivation of three clones from human embryonic stem cell lines by FACS sorting and their characterization. Stem Cells Dev 15:61–69

    Article  PubMed  CAS  Google Scholar 

  85. Nicholas CR, Gaur M, Wang S, Pera RA, Leavitt AD (2007) A method for single-cell sorting and expansion of genetically modified human embryonic stem cells. Stem Cells Dev 16:109–117

    Article  PubMed  CAS  Google Scholar 

  86. Hewitt Z, Forsyth NR, Waterfall M, Wojtacha D, Thomson AJ, McWhir J (2006) Fluorescence-activated single cell sorting of human embryonic stem cells. Cloning Stem Cells 8:225–234

    Article  PubMed  CAS  Google Scholar 

  87. Venable A, Mitalipova M, Lyons I, Jones K, Shin S, Pierce M, Stice S (2005) Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces. BMC Dev Biol 5:15

    Article  PubMed  Google Scholar 

  88. Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11:514–518

    Article  PubMed  CAS  Google Scholar 

  89. Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, Carpenter MK (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn 229:259–274

    Article  PubMed  CAS  Google Scholar 

  90. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574

    Article  PubMed  CAS  Google Scholar 

  91. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129:1081–1095

    Article  PubMed  CAS  Google Scholar 

  92. Perez OD, Nolan GP (2002) Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 20:155–162

    PubMed  CAS  Google Scholar 

  93. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  PubMed  CAS  Google Scholar 

  94. Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91:688–698

    Article  PubMed  CAS  Google Scholar 

  95. Cheon SH, Kim SJ, Jo JY, Ryu WJ, Rhee K, Roh SI (2005) Defined feeder-free culture system of human embryonic stem cells. Biol Reprod 74(3):611

    PubMed  Google Scholar 

  96. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103:6907–6912

    Article  PubMed  CAS  Google Scholar 

  97. Bigdeli N, Andersson M, Strehl R, Emanuelsson K, Kilmare E, Hyllner J, Lindahl A (2007) Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol 133(1):146–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.C.B. and M.H.S are supported by CIHR Canada Graduate Scholarship Doctoral awards, M. Bhatia by the Canadian Chair Program who holds the Canada Research Chair in human stem cell biology and Michael G. DeGroote Chair in Stem Cell Biology. Thanks to Rahul Sarugaser for insightful comments and edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickie Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, M.H., Bendall, S.C. & Bhatia, M. Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med 86, 875–886 (2008). https://doi.org/10.1007/s00109-008-0356-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0356-9

Keywords

Navigation