Skip to main content

Advertisement

Log in

The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Human CD133 (human prominin-1), a five transmembrane domain glycoprotein, was originally identified as a cell surface antigen present on CD34+ hematopoietic stem cells. Although the biological function of CD133 is not well understood, antibodies to CD133 epitopes have been widely used to purify hematopoietic stem and progenitor cells. The cancer stem cell (CSC) hypothesis postulates that a rare population of tumor cells possessing increased capacities for self-renewal and tumor initiation is responsible for maintaining the growth of neoplastic tissue. The expression of the CD133 epitopes, AC133 and AC141, has been shown to define a subpopulation of brain tumor cells with significantly increased capacity for tumor initiation in xenograft models. Following the discovery of the AC133/AC141+ population of brain tumor stem cells, the AC133 and AC141 epitopes have been extensively used as markers for purifying CSCs in other solid tumors. There are, however, several issues associated with the use of the AC133 and AC141 CD133 epitopes as markers for CSCs. The antibodies routinely used for purification of AC133 and AC141-positive cells target poorly characterized glycosylated epitopes of uncertain specificity. Discordant expression of the AC133 and AC141 epitopes has been observed, and the epitopes can be absent despite the presence of CD133 protein. In addition, CD133 expression has recently been shown to be modulated by oxygen levels. These factors, in combination with the uncertain biological role of CD133, suggest that the use of CD133 expression as a marker for CSCs should be critically evaluated in each new experimental system and highlight the need for additional CSC surface markers that are directly involved in maintaining CSC properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cell

mAb:

monoclonal antibody

FACS:

fluorescence-activated cell sorting

aa:

amino acids

References

  1. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  2. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    PubMed  CAS  Google Scholar 

  3. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytypic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  Google Scholar 

  4. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  5. Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520

    Article  PubMed  CAS  Google Scholar 

  6. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  7. Hao HN, Zhao J, Thomas RL, Parker GC, Lyman WD (2003) Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J Hematother Stem Cell Res 12:23–32

    Article  PubMed  CAS  Google Scholar 

  8. Belicchi M, Pisati F, Lopa R, Porretti L, Fortunato F, Sironi M, Scalamogna M, Parati EA, Bresolin N, Torrente Y (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486

    Article  PubMed  CAS  Google Scholar 

  9. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    Article  PubMed  CAS  Google Scholar 

  10. Mizrak D, Brittan M, Alison M (2008) CD133: molecule of the moment. J Pathol 214:3–9

    Article  PubMed  CAS  Google Scholar 

  11. Guo W, Lasky JL 3rd, Wu H (2006) Cancer stem cells. Pediatr Res 59:59R–64R

    Article  PubMed  Google Scholar 

  12. Nakano I, Kornblum HI (2006) Brain tumor stem cells. Pediatr Res 59:54R–58R

    Article  PubMed  Google Scholar 

  13. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  PubMed  CAS  Google Scholar 

  14. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    Article  PubMed  CAS  Google Scholar 

  15. Dirks PB (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond B Biol Sci 363:139–152

    Article  PubMed  CAS  Google Scholar 

  16. Dick JE, Lapidot T (2005) Biology of normal and acute myeloid leukemia stem cells. Int J Hematol 82:389–396

    Article  PubMed  CAS  Google Scholar 

  17. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  18. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  19. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  20. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  21. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  CAS  Google Scholar 

  22. Blazek ER, Foutch JL, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133-cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 67:1–5

    PubMed  CAS  Google Scholar 

  23. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736

    Article  PubMed  CAS  Google Scholar 

  24. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  25. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  26. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  27. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  28. Ieta K, Tanaka F, Haraguchi N, Kita Y, Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H, Mori M (2008) Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol 15:638–648

    Article  PubMed  Google Scholar 

  29. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  30. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133+hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824

    Article  PubMed  CAS  Google Scholar 

  31. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008) CD133+HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27:1749–1758

    Article  PubMed  CAS  Google Scholar 

  32. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556

    Article  PubMed  CAS  Google Scholar 

  33. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120:1444–1450

    Article  PubMed  CAS  Google Scholar 

  34. Zhou L, Wei X, Cheng L, Tian J, Jiang JJ (2007) CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope 117:455–460

    Article  PubMed  CAS  Google Scholar 

  35. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    Article  PubMed  CAS  Google Scholar 

  36. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G (2007). Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer DOI 10.1111/j.1525-1438.2007.01056.x, Sep 14 [Epub ahead of print]

  37. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  38. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6:92–97

    PubMed  CAS  Google Scholar 

  39. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  40. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  PubMed  CAS  Google Scholar 

  41. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  42. Green WB, Slovak ML, Chen IM, Pallavicini M, Hecht JL, Willman CL (1999) Lack of IRF-1 expression in acute promyelocytic leukemia and in a subset of acute myeloid leukemias with del(5)(q31). Leukemia 13:1960–1971

    Article  PubMed  CAS  Google Scholar 

  43. Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26

    Article  PubMed  CAS  Google Scholar 

  44. Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S (2004) Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103:2055–2061

    Article  PubMed  CAS  Google Scholar 

  45. Yu Y, Flint A, Dvorin EL, Bischoff J (2002) AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem 277:20711–20716

    Article  PubMed  CAS  Google Scholar 

  46. Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB, Corbeil D (2004) Identification of novel prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci 117:4301–4311

    Article  PubMed  CAS  Google Scholar 

  47. Potgens AJ, Schmitz U, Kaufmann P, Frank HG (2002) Monoclonal antibody CD133-2 (AC141) against hematopoietic stem cell antigen CD133 shows cross-reactivity with cytokeratin 18. J Histochem Cytochem 50:1131–1134

    PubMed  CAS  Google Scholar 

  48. Platet N, Liu SY, Atifi ME, Oliver L, Vallette FM, Berger F, Wion D (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258:286–290

    Article  PubMed  CAS  Google Scholar 

  49. Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383

    PubMed  CAS  Google Scholar 

  50. Zhu LL, Wu LY, Yew DT, Fan M (2005) Effects of hypoxia on the proliferation and differentiation of NSCs. Mol Neurobiol 31:231–242

    Article  PubMed  CAS  Google Scholar 

  51. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  PubMed  CAS  Google Scholar 

  52. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  53. Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2007) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene DOI 10.1038/sj.onc.1210949, Nov 26 [Epub ahead of print]

  54. Johns TG, Perera RM, Vernes SC, Vitali AA, Cao DX, Cavenee WK, Scott AM, Furnari FB (2007) The efficacy of epidermal growth factor receptor-specific antibodies against glioma xenografts is influenced by receptor levels, activation status, and heterodimerization. Clin Cancer Res 13:1911–1925

    Article  PubMed  CAS  Google Scholar 

  55. Corbeil D, Roper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  PubMed  CAS  Google Scholar 

  56. Bauer N, Fonseca AV, Florek M, Freund D, Jaszai J, Bornhauser M, Fargeas CA, Corbeil D (2007) New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs DOI 10.1159/000112847, Dec 21 [Epub ahead of print]

  57. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Roper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank the National Institute of Health (R01 CA118919 to BL) and the US Army Medical Research and Material Command (W81XWH-05-1-0027 to BL) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidlingmaier, S., Zhu, X. & Liu, B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 86, 1025–1032 (2008). https://doi.org/10.1007/s00109-008-0357-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0357-8

Keywords

Navigation