Skip to main content

Advertisement

Log in

Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cancer cell invasion is one of the crucial events in local spreading, growth, and metastasis of tumors. The present study investigated the antiinvasive and antimetastatic action of gambogic acid (GA) in MDA-MB-435 human breast carcinoma cells. GA caused a concentration-dependent suppression of cell invasion through Matrigel and significantly inhibited lung metastases of the cells transplanted in vivo. The potent effects of GA have been attributed to its ability to reduce the expression of matrix metalloproteinases (MMP) 2 and 9 in vitro and in vivo both at the protein and mRNA levels, which were associated with protein kinase C (PKC) signaling pathway as supported by the diminished antiinvasive effect of GA in the presence of specific activator of the pathway. Collectively, our data demonstrated that GA exhibited antiinvasion properties on highly invasive cancer cells via PKC mediated MMP-2/9 expression inhibition. This indicated that GA can be served as a potential novel therapeutic candidate for the treatment of cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kreusel KM, Bechrakis NE, Wiegel T, Krause L, Foerster MH (2007) Incidence and clinical characteristics of symptomatic choroidal metastasis from lung cancer. Acta Ophthalmol 85:298–302

    Article  Google Scholar 

  2. Jemal A, Ward E, Thun MJ (2007) Recent trends in breast cancer incidence rates by age and tumor characteristics among U.S. women. Breast Cancer Res 9:R28

    Article  Google Scholar 

  3. Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13:535–541

    PubMed  CAS  Google Scholar 

  4. Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 6:478–482

    Article  PubMed  CAS  Google Scholar 

  5. Khasigov PZ, Podobed OV, Gracheva TS, Salbiev KD, Grachev SV, Berezov TT (2003) Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Biochemistry (Mosc) 68:711–717

    Article  CAS  Google Scholar 

  6. Duffy MJ (1996) The biochemistry of metastasis. Adv Clin Chem 32:135–166

    Article  PubMed  CAS  Google Scholar 

  7. Kelly T, Yan Y, Osborne RL, Athota AB, Rozypal TL, Colclasure JC, Chu WS (1998) Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis 16:501–512

    Article  PubMed  CAS  Google Scholar 

  8. Yao GY, Yang MT (2002) Matrix metalloproteinases and breast cancer. Ai Zheng 21:1029–1034

    PubMed  Google Scholar 

  9. Garibyan L, Lenahan C, Pories S (2004) Metalloproteinases: promising tumor markers for breast cancer management. Curr Surg 61:255–259

    Article  PubMed  Google Scholar 

  10. Gonzalez LO, Corte MD, Vazquez J, Junquera S, Sanchez R, Alvarez AC, Rodriguez JC, Lamelas ML, Vizoso FJ (2008) Androgen receptor expresion in breast cancer: relationship with clinicopathological characteristics of the tumors, prognosis, and expression of metalloproteases and their inhibitors. BMC Cancer 8:149

    Article  PubMed  CAS  Google Scholar 

  11. Gonzalez LO, Pidal I, Junquera S, Corte MD, Vazquez J, Rodriguez JC, Lamelas ML, Merino AM, Garcia-Muniz JL, Vizoso FJ (2007) Overexpression of matrix metalloproteinases and their inhibitors in mononuclear inflammatory cells in breast cancer correlates with metastasis-relapse. Br J Cancer 97:957–963

    Article  PubMed  CAS  Google Scholar 

  12. Vizoso FJ, Gonzalez LO, Corte MD, Rodriguez JC, Vazquez J, Lamelas ML, Junquera S, Merino AM, Garcia-Muniz JL (2007) Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer 96:903–911

    Article  PubMed  CAS  Google Scholar 

  13. Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA (2002) Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg 23:260–269

    Article  PubMed  CAS  Google Scholar 

  14. Choi J, Choi K, Benveniste EN, Rho SB, Hong YS, Lee JH, Kim J, Park K (2005) Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res 65:5554–5560

    Article  PubMed  CAS  Google Scholar 

  15. Schnaeker EM, Ossig R, Ludwig T, Dreier R, Oberleithner H, Wilhelmi M, Schneider SW (2004) Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: prerequisite in human melanoma cell invasion. Cancer Res 64:8924–8931

    Article  PubMed  CAS  Google Scholar 

  16. Yuecheng Y, Xiaoyan X (2007) Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev 16:430–435

    Article  PubMed  Google Scholar 

  17. Park MJ, Lee JY, Kwak HJ, Park CM, Lee HC, Woo SH, Jin HO, Han CJ, An S, Lee SH, Chung HY, Park IC, Hong SI, Rhee CH (2005) Arsenic trioxide (As2O3) inhibits invasion of HT1080 human fibrosarcoma cells: role of nuclear factor-kappaB and reactive oxygen species. J Cell Biochem 95:955–969

    Article  PubMed  CAS  Google Scholar 

  18. Guo QL, Lin SS, You QD, Gu HY, Yu J, Zhao L, Qi Q, Liang F, Tan Z, Wang X (2006) Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells. Life Sci 78:1238–1245

    Article  PubMed  CAS  Google Scholar 

  19. Kasibhatla S, Jessen KA, Maliartchouk S, Wang JY, English NM, Drewe J, Qiu L, Archer SP, Ponce AE, Sirisoma N, Jiang S, Zhang HZ, Gehlsen KR, Cai SX, Green DR, Tseng B (2005) A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc Natl Acad Sci USA 102:12095–12100

    Article  PubMed  CAS  Google Scholar 

  20. Liu W, Guo QL, You QD, Zhao L, Gu HY, Yuan ST (2005) Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J Gastroenterol 11:3655–3659

    PubMed  CAS  Google Scholar 

  21. Yu J, Guo QL, You QD, Lin SS, Li Z, Gu HY, Zhang HW, Tan Z, Wang X (2006) Repression of telomerase reverse transcriptase mRNA and hTERT promoter by gambogic acid in human gastric carcinoma cells. Cancer Chemother Pharmacol 58:434–443

    Article  PubMed  CAS  Google Scholar 

  22. Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-{kappa}B signaling pathway. Blood 110:3517–3525

    Article  PubMed  CAS  Google Scholar 

  23. Qin Y, Meng L, Hu C, Duan W, Zuo Z, Lin L, Zhang X, Ding J (2007) Gambogic acid inhibits the catalytic activity of human topoisomerase IIalpha by binding to its ATPase domain. Mol Cancer Ther 6:2429–2440

    Article  PubMed  CAS  Google Scholar 

  24. Zhao J, Qi Q, Yang Y, Gu HY, Lu N, Liu W, Wang W, Qiang L, Zhang LB, You QD, Guo QL (2008) Inhibition of alpha(4) integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with Gambogic acid. Eur J Pharmacol 589:127–131

    Article  PubMed  CAS  Google Scholar 

  25. Lu N, Yang Y, You QD, Ling Y, Gao Y, Gu HY, Zhao L, Wang XT, Guo QL (2007) Gambogic acid inhibits angiogenesis through suppressing vascular endothelial growth factor-induced tyrosine phosphorylation of KDR/Flk-1. Cancer Lett 258:80–89

    Article  PubMed  CAS  Google Scholar 

  26. Qiang L, Yang Y, You QD, Ma YJ, Yang L, Nie FF, Gu HY, Zhao L, Lu N, Qi Q, Liu W, Wang XT, Guo QL (2008) Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study. Biochem Pharmacol 75:1083–1092

    Article  PubMed  CAS  Google Scholar 

  27. Yi T, Yi Z, Cho SG, Luo J, Pandey MK, Aggarwal BB, Liu M (2008) Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res 68:1843–1850

    Article  PubMed  CAS  Google Scholar 

  28. Woo JH, Lim JH, Kim YH, Suh SI, Min DS, Chang JS, Lee YH, Park JW, Kwon TK (2004) Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 23:1845–1853

    Article  PubMed  CAS  Google Scholar 

  29. He S, Prasanna G, Yorio T (2007) Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Invest Ophthalmol Vis Sci 48:3737–3745

    Article  PubMed  Google Scholar 

  30. Xie Z, Singh M, Singh K (2004) Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta. J Biol Chem 279:39513–39519

    Article  PubMed  CAS  Google Scholar 

  31. Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, Drewe J, Cai SX (2004) Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 12:309–317

    Article  PubMed  CAS  Google Scholar 

  32. You QD, Guo QL, Feng F, Liu WY (2003) Chinese patent

  33. Albini A (1998) Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res 4:230–241

    Article  PubMed  CAS  Google Scholar 

  34. Radinsky R, Fidler IJ, Price JE, Esumi N, Tsan R, Petty CM, Bucana CD, Bar-Eli M (1994) Terminal differentiation and apoptosis in experimental lung metastases of human osteogenic sarcoma cells by wild type p53. Oncogene 9:1877–1883

    PubMed  CAS  Google Scholar 

  35. Albini A, D’Agostini F, Giunciuglio D, Paglieri I, Balansky R, De Flora S (1995) Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int J Cancer 61:121–129

    Article  PubMed  CAS  Google Scholar 

  36. Ko CH, Shen SC, Lee TJ, Chen YC (2005) Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Mol Cancer Ther 4:281–290

    PubMed  CAS  Google Scholar 

  37. Reuben PM, Brogley MA, Sun Y, Cheung HS (2002) Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase C alpha. J Biol Chem 277:15190–15198

    PubMed  CAS  Google Scholar 

  38. Jones JL, Shaw JA, Pringle JH, Walker RA (2003) Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol 201:562–572

    Article  PubMed  CAS  Google Scholar 

  39. Aye MM, Ma C, Lin H, Bower KA, Wiggins RC, Luo J (2004) Ethanol-induced in vitro invasion of breast cancer cells: the contribution of MMP-2 by fibroblasts. Int J Cancer 112:738–746

    Article  PubMed  CAS  Google Scholar 

  40. McDonnell SE, Kerr LD, Matrisian LM (1990) Epidermal growth factor stimulation of stromelysin mRNA in rat fibroblasts requires induction of proto-oncogenes c-fos and c-jun and activation of protein kinase C. Mol Cell Biol 10:4284–4293

    PubMed  CAS  Google Scholar 

  41. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  42. Xie Z, Singh M, Siwik DA, Joyner WL, Singh K (2003) Osteopontin inhibits interleukin-1beta-stimulated increases in matrix metalloproteinase activity in adult rat cardiac fibroblasts: role of protein kinase C-zeta. J Biol Chem 278:48546–48552

    Article  PubMed  CAS  Google Scholar 

  43. Thomas SM, DeMarco M, D’Arcangelo G, Halegoua S, Brugge JS (1992) Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040

    Article  PubMed  CAS  Google Scholar 

  44. Wood KW, Sarnecki C, Roberts TM, Blenis J (1992) ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68:1041–1050

    Article  PubMed  CAS  Google Scholar 

  45. Kurata H, Thant AA, Matsuo S, Senga T, Okazaki K, Hotta N, Hamaguchi M (2000) Constitutive activation of MAP kinase (MEK1) is critical and sufficient for the activation of MMP-2. Exp Cell Res 254:180–188

    Article  PubMed  CAS  Google Scholar 

  46. Thant AA, Serbulea M, Kikkawa F, Liu E, Tomoda Y, Hamaguchi M (1997) c-Ras is required for the activation of the matrix metalloproteinases by concanavalin A in 3Y1 cells. FEBS Lett 406:28–30

    Article  PubMed  CAS  Google Scholar 

  47. Meade-Tollin LC, Boukamp P, Fusenig NE, Bowen CP, Tsang TC, Bowden GT (1998) Differential expression of matrix metalloproteinases in activated c-ras-Ha-transfected immortalized human keratinocytes. Br J Cancer 77:724–730

    PubMed  CAS  Google Scholar 

  48. Clerk A, Sugden PH (2001) Untangling the Web: specific signaling from PKC isoforms to MAPK cascades. Circ Res 89:847–849

    PubMed  CAS  Google Scholar 

  49. Naruse K, King GL (2000) Protein kinase C and myocardial biology and function. Circ Res 86:1104–1106

    PubMed  CAS  Google Scholar 

  50. Liu JF, Crepin M, Liu JM, Barritault D, Ledoux D (2002) FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem Biophys Res Commun 293:1174–1182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 30472044, 30701032, and 90713038) and a startup fund from Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-dong You, Xiaotang Wang or Qinglong Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Effect of GA on the tumor growth and tumor lung metastasis in mice bearing MDA-MB-435 human breast carcinoma cell. A. effects of GA on the tumor weight of the nude mice bearing MDA-MB-435 cells. B, the percentage of the mice occurred lung metastasis. C. quantitative evaluation of detectable lung metastases; Data represent the means ± SEM from three independent experiments. *p < 0.05, **p < 0.01 vs. NS group. (DOC 21.3 KB)

Table S1

The sequences of PCR primers. (DOC 26.0 KB)

ESM 1

(PDF 246 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Q., Gu, H., Yang, Y. et al. Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. J Mol Med 86, 1367–1377 (2008). https://doi.org/10.1007/s00109-008-0398-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0398-z

Keywords

Navigation