Skip to main content
Log in

RNaseH2 mutants that cause Aicardi–Goutieres syndrome are active nucleases

  • Rapid Communication
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mutations in the genes encoding the RNaseH2 and TREX1 nucleases have been identified in patients with Aicardi–Goutieres syndrome (AGS). To determine if the AGS RNaseH2 mutations result in the loss of nuclease activity, the human wild-type RNaseH2 and four mutant complexes that constitute the majority of mutations identified in AGS patients have been prepared and tested for ribonuclease H activity. The heterotrimeric structures of the mutant RNaseH2 complexes are intact. Furthermore, the ribonuclease H activities of the mutant complexes are indistinguishable from the wild-type enzyme with the exception of the RNaseH2 subunit A (Gly37Ser) mutant, which exhibits some evidence of altered nuclease specificity. These data indicate that the mechanism of RNaseH2 dysfunction in AGS cannot be simply explained by loss of ribonuclease H activity and points to a more complex mechanism perhaps mediated through altered interactions with as yet identified nucleic acids or protein partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Aicardi J, Goutieres F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal-fluid lymphocytosis. Ann Neurol 15:49–54

    Article  PubMed  CAS  Google Scholar 

  2. Goutieres F, Aicardi J, Barth PG, Lebon P (1998) Aicardi–Goutieres syndrome: an update and results of interferon-alpha studies. Ann Neurol 44:900–907

    Article  PubMed  CAS  Google Scholar 

  3. Goutieres F (2005) Aicardi–Goutieres syndrome. Brain Dev 27:201–206

    Article  PubMed  Google Scholar 

  4. Crow YJ, Hayward BE, Parmar R et al (2006) Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi–Goutieres syndrome at the AGS1 locus. Nat Genet 38:917–920

    Article  PubMed  CAS  Google Scholar 

  5. Crow YJ, Leitch A, Hayward BE et al (2006) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38:910–916

    Article  PubMed  CAS  Google Scholar 

  6. Jeong HS, Backlund PS, Chen HC, Karavanov AA, Crouch RJ (2004) RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res 32:1616–1616

    Article  CAS  Google Scholar 

  7. Mazur DJ, Perrino FW (1999) Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′→5′ exonucleases. J Biol Chem 274:19655–19660

    Article  PubMed  CAS  Google Scholar 

  8. Hoss M, Robins P, Naven TJ, Pappin DJ, Sgouros J, Lindahl T (1999) A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J 18:3868–3875

    Article  PubMed  CAS  Google Scholar 

  9. Mazur DJ, Perrino FW (2001) Excision of 3′ termini by the Trex1 and TREX2 3′→5′ exonucleases—characterization of the recombinant proteins. J Biol Chem 276:17022–17029

    Article  PubMed  CAS  Google Scholar 

  10. deSilva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T (2007) The crystal structure of TREX1 explains the 3′ nucleotide specificity and reveals a polyproline II helix for protein partnering. J Biol Chem 282:10537–10543

    Article  CAS  Google Scholar 

  11. Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, Robins P, Harvey S, Hollis T, O’Hara A, Herrick AL, Bowden AP, Perrino FW, Lindahl T, Barnes DE, Crow YJ (2007) Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi–Goutieres syndrome. Am J Hum Genet 80:811–815

    Article  PubMed  CAS  Google Scholar 

  12. Tolmie JL, Shillito P, Hughesbenzie R, Stephenson JBP (1995) The Aicardi–Goutieres syndrome (familial, early-onset encephalopathy with calcifications of the basal ganglia and chronic cerebrospinal-fluid lymphocytosis). J Med Genetics 32:881–884

    Article  CAS  Google Scholar 

  13. Rice G, Patrick T, Parmar R et al (2007) Clinical and molecular phenotype of Aicardi–Goutieres syndrome. Am J Hum Genet 81:713–725

    Article  PubMed  CAS  Google Scholar 

  14. Lee-Kirsch MA, Gong ML, Schulz H, Ruschendorf F, Stein A, Pfeiffer C, Ballarini A, Gahr M, Hubner N, Linne M (2006) Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 79:731–737

    Article  PubMed  CAS  Google Scholar 

  15. Lee-Kirsch MA, Chowdhury D, Harvey S, Gong M, Senenko L, Engel K, Pfeiffer C, Hollis T, Gahr M, Perrino FW, Lieberman J, Hubner N (2007) A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med 85:531–537

    Article  PubMed  CAS  Google Scholar 

  16. Lee-Kirsch MA, Gong M, Chowdhury D et al (2007) Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39:1065–1067

    Article  PubMed  CAS  Google Scholar 

  17. Richards A, van den Maagdenberg A, Jen JC et al (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070

    Article  PubMed  CAS  Google Scholar 

  18. Kavanagh D, Spitzer D, Kothari PH, Shaikh A, Liszewski MK, Richards A, Atkinson JP (2008) New roles for the major human 3′–5′ exonuclease TREX1 in human disease. Cell Cycle 7:1718–1725

    PubMed  CAS  Google Scholar 

  19. Morita M, Stamp G, Robins P, Dulic A, Rosewell I, Hrivnak G, Daly G, Lindahl T, Barnes DE (2004) Gene-targeted mice lacking the Trex1 (DNaseIII) 3′–5′ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 24:6719–6727

    Article  PubMed  CAS  Google Scholar 

  20. Chowdhury D, Beresford PJ, Zhu PC, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J (2006) The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 23:133–142

    Article  PubMed  CAS  Google Scholar 

  21. Lehtinen DA, Harvey S, Mulcahy MJ, Hollis T, Perrino FW (2008) The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J Biol Chem 283:31649–31656

    Article  PubMed  CAS  Google Scholar 

  22. Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886

    Article  PubMed  CAS  Google Scholar 

  23. Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598

    Article  PubMed  CAS  Google Scholar 

  24. Hostomsky Z, Hostomska Z, Matthews DA (1993) Ribonucleases H. In: Linn SM, Lloyd RS, Roberts RJ (eds) Nucleases, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 341–376

    Google Scholar 

  25. Higuchi R (1990) In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 177–183

  26. Perrino FW, Harvey S, McMillin S, Hollis T (2005) The human TREX2 3′→5′-exonuclease structure suggests a mechanism for efficient nonprocessive DNA catalysis. J Biol Chem 280:15212–15218

    Article  PubMed  CAS  Google Scholar 

  27. Rohman MS, Koga Y, Takano K, Chon H, Crouch RJ, Kanaya S (2008) Effect of the disease-causing mutations identified in human ribonuclease (RNase) H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII. FEBS J 275:4836–4849

    Article  PubMed  CAS  Google Scholar 

  28. Qiu JZ, Qian Y, Frank P, Wintersberger U, Shen BH (1999) Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol Cell Biol 19:8361–8371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants National Institutes of Health GM069962 (FWP), Alliance for Lupus Research 67692 (FWP), and American Cancer Society RSG-04-187-01-GMC (TH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred W. Perrino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrino, F.W., Harvey, S., Shaban, N.M. et al. RNaseH2 mutants that cause Aicardi–Goutieres syndrome are active nucleases. J Mol Med 87, 25–30 (2009). https://doi.org/10.1007/s00109-008-0422-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0422-3

Keywords

Navigation