Skip to main content

Advertisement

Log in

ATF3 transcription factor and its emerging roles in immunity and cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Activating transcription factor 3 (ATF3) is a member of the ATF/cyclic AMP response element-binding (ATF/CREB) family of transcription factors. It is an adaptive-response gene that participates in cellular processes to adapt to extra- and/or intracellular changes, where it transduces signals from various receptors to activate or repress gene expression. Advances made in understanding the immunobiology of Toll-like receptors have recently generated new momentum for the study of ATF3 in immunity. Moreover, the role of ATF3 in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hai T (2006) The ATF transcription factors in cellular adaptive responses. In: Ma J (ed) Gene expression and regulation. Higher Education Press, Beijing, China, pp 322–333

    Google Scholar 

  2. Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178

    Article  CAS  PubMed  Google Scholar 

  3. Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF (1988) Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem 263:18466–18472

    CAS  PubMed  Google Scholar 

  4. Hai T, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090

    Article  CAS  PubMed  Google Scholar 

  5. Chen BP, Liang G, Whelan J, Hai T (1994) ATF3 and ATF3 ∆ Zip: transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 269:15819–15826

    CAS  PubMed  Google Scholar 

  6. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724

    Article  CAS  PubMed  Google Scholar 

  7. Hsu JC, Laz T, Mohn KL, Taub R (1991) Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci USA 88:3511–3515

    Article  CAS  PubMed  Google Scholar 

  8. Hsu JC, Bravo R, Taub R (1992) Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12:4654–4665

    CAS  PubMed  Google Scholar 

  9. Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ (1994) Activating transcription factor-3 stimulates 3′, 5′-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol 8:59–68

    Article  CAS  PubMed  Google Scholar 

  10. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141

    Article  CAS  PubMed  Google Scholar 

  11. Nilsson M, Toftgard R, Bohm S (1995) Activated Ha-Ras but not TPA induces transcription through binding sites for activating transcription factor 3/Jun and a novel nuclear factor. J Biol Chem 270:12210–12218

    Article  CAS  PubMed  Google Scholar 

  12. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335

    CAS  PubMed  Google Scholar 

  13. Lu D, Wolfgang CD, Hai T (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281:10473–10481

    Article  CAS  PubMed  Google Scholar 

  14. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825

    Article  CAS  PubMed  Google Scholar 

  15. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ (2008) Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 105:652–656

    Article  CAS  PubMed  Google Scholar 

  16. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127

    Article  CAS  PubMed  Google Scholar 

  17. Leitner WW, Hwang LN, DeVeer MJ, Zhou A, Silverman RH, Williams BRG, Dubensky TW, Ying H, Restifo NP (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9:33–39

    Article  CAS  PubMed  Google Scholar 

  18. Scheule RK (2000) The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev 44:119–134

    Article  CAS  PubMed  Google Scholar 

  19. McCluskie MJ, Weeratna RD, Davis HL (2000) The role of CpG in DNA vaccines. Springer Semin Immunopathol 22:125–132

    Article  CAS  PubMed  Google Scholar 

  20. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D, Williams BRG (2004) Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumour activity. Cancer Res 64:5850–5860

    Article  CAS  PubMed  Google Scholar 

  21. Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BRG (2007) Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179:3622–3630

    CAS  PubMed  Google Scholar 

  22. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  CAS  PubMed  Google Scholar 

  23. Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy K, Lampano AE, Nykter M, Shmulevich I, Aderem A (2009) Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10:437–443

    Article  CAS  PubMed  Google Scholar 

  24. Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, Grey ST, Ron D, Hai T (2004) Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 24:5721–5732

    Article  CAS  PubMed  Google Scholar 

  25. Gilchrist M, Henderson WR Jr, Clark AE, Simmons RM, Ye X, Smith KD, Aderem A (2008) Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J Exp Med 205:2349–2357

    Article  CAS  PubMed  Google Scholar 

  26. Khuu CH, Barrozo RB, Hai T, Weinstein SL (2007) Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol 44:1598–1605

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberger CM, Clark AE, Treuting PM, Johnson CD, Aderem A (2008) ATF3 regulates MCMV infection in mice by modulating IFN-γ expression in natural killer cells. Proc Natl Acad Sci USA 105:2544–2549

    Article  CAS  PubMed  Google Scholar 

  28. Yin X, DeWille JW, Hai T (2008) A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 27:2118–2127

    Article  CAS  PubMed  Google Scholar 

  29. Pelzer AE, Bektic J, Haag P, Berger AP, Pycha A, Schäfer G, Rogatsch H, Horninger W, Bartsch G, Klocker H (2006) The expression of transcription factor activating transcription factor 3 in the human prostate and its regulation by androgen in prostate cancer. J Urol 175:1517–1522

    Article  CAS  PubMed  Google Scholar 

  30. Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Jöhrens K, Hagemeier C, Bommert K, Stein H, Dörken D, Bargou RC (2006) Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood 107:2536–2539

    Article  CAS  PubMed  Google Scholar 

  31. Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, Furuta E, Mohinta S, Liu W, Horita S, Hosobe S, Tsikada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D, Hai T, Watabe K (2006) The tumor metastatis suppressor gene Drg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res 66:11983–11990

    Article  CAS  PubMed  Google Scholar 

  32. Ishiguro T, Nagawa H, Naito M, Tsuruo T (2000) Inhibitory effect of ATF3 antisense oligonucleotide on ectopic growth of HT29 human colon cancer cells. Jpn J Cancer Res 91:833–836

    CAS  PubMed  Google Scholar 

  33. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  CAS  PubMed  Google Scholar 

  34. Maytin EV, Ubeda M, Lin JC, Habener JF (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res 267:193–204

    Article  CAS  PubMed  Google Scholar 

  35. Kim R, Ohi Y, Inoue H, Aogi K, Toge T (1999) Introduction of gadd153 gene into gastric cancer cells can modulate sensitivity to anticancer agents in association with apoptosis. Anticancer Res 19:1779–1783

    CAS  PubMed  Google Scholar 

  36. Scott DW, Loo G (2004) Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis 25:2155–2164

    Article  CAS  PubMed  Google Scholar 

  37. Wolfgang CD, Chen BP, Martindale JL, Holbrook NJ, Hai T (1997) gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol 17:6700–6707

    CAS  PubMed  Google Scholar 

  38. Bottone FG Jr, Martinez JM, Collins JB, Afshari CA, Eling TE (2003) Gene modulation by the cyclooxygenase inhibitor, sulindac sulfide, in human colorectal carcinoma cells: possible link to apoptosis. J Biol Chem 278:25790–25801

    Article  CAS  PubMed  Google Scholar 

  39. Huang X, Li X, Guo B (2008) KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J Biol Chem 283:29795–29801

    Article  CAS  PubMed  Google Scholar 

  40. Bottone FG Jr, Moon Y, Kim JS, Alston-Mills B, Ishibashi M, Eling TE (2005) The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Mol Cancer Ther 4:693–703

    Article  CAS  PubMed  Google Scholar 

  41. Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T, Ho SM (2005) Identification of ATF-3, caveolin-1, DLC-1, and NM23–H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene 24:1774–1787

    Article  CAS  PubMed  Google Scholar 

  42. Kang Y, Chen CR, Massague J (2003) A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11:915–926

    Article  CAS  PubMed  Google Scholar 

  43. Ling MT, Wang X, Zhang X, Wong YC (2006) The multiple roles of Id-1 in cancer progression. Differentiation 74:481–487

    Article  CAS  PubMed  Google Scholar 

  44. Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD (2005) Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4:233–241

    CAS  PubMed  Google Scholar 

  45. Yamaguchi K, Lee SH, Kim JS, Wimalasena J, Kitajima S, Baek SJ (2006) Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res 66:2376–2384

    Article  CAS  PubMed  Google Scholar 

  46. Wang A, Arantes S, Conti C, McArthur M, Aldaz CM, MacLeod MC (2007) Epidermal hyperplasia and oral carcinoma in mice overexpressing the transcription factor ATF3 in basal epithelial cells. Mol Carcinog 46:476–487

    Article  CAS  PubMed  Google Scholar 

  47. Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A, Thames HD, Aldaz CM, Macleod MC (2008) The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer 8:268

    Article  CAS  PubMed  Google Scholar 

  48. Li D, Yin X, Zmuda EJ, Wolford CC, Dong X, White MF, Hai T (2008) The repression of IRS2 gene by ATF3, a stress-inducible gene, contributes to pancreatic beta-cell apoptosis. Diabetes 57:635–644

    Article  CAS  PubMed  Google Scholar 

  49. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904

    Article  CAS  PubMed  Google Scholar 

  50. Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV (2007) Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle 6:705–713

    CAS  PubMed  Google Scholar 

  51. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25:1620–1628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Institutes of Health (P01 CA062220). MT was supported by a scholarship from the Australian Rotary Health Research Fund/Rotary District 9650 Bowelscan.

Conflict of interest statement

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan R. G. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, M.R., Xu, D. & Williams, B.R.G. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med 87, 1053–1060 (2009). https://doi.org/10.1007/s00109-009-0520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0520-x

Keywords

Navigation