Skip to main content

Advertisement

Log in

Cancer stem cells—clinical relevance

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Therapeutic advances over the past three decades now allow most cancer patients to achieve major clinical responses. Although clinical responses can clearly decrease side effects and improve quality of life, most cancer patients still eventually relapse and die of their disease. Many cancers have now been shown to harbor cells that are phenotypically and biologically similar to normal cells with self-renewal capacity; these so-called cancer stem cells (CSC) typically constitute only a small fraction of the total tumor burden, but theoretically harbor all the self-renewal capacity. Moreover, the CSC appears to be relatively resistant to standard anticancer therapies by co-opting normal stem cells' intrinsic defense mechanisms, such as quiescence, efflux pumps, and detoxifying enzymes. However, the clinical importance of CSC, if any, remains unproven. Nevertheless, emerging evidence suggests that initial responses in cancer represent therapeutic effectiveness against the bulk cancer cells, while the rare CSC is responsible for relapse. Better understanding of the biology of CSC, as well as reexamining both our preclinical and clinical drug development paradigms to include the CSC concept, has the potential to revolutionize the treatment of many cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fialkow PJ, Gartler SM, Yoshida A (1967) Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 58:1468–1471

    Article  CAS  PubMed  Google Scholar 

  2. Park CH, Bergsagel DE, McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46:411–422

    CAS  PubMed  Google Scholar 

  3. Bedi A, Zehnbauer BA, Collector MI, Barber JP, Zicha MS, Sharkis SJ, Jones RJ (1993) BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 81:2898–2902

    CAS  PubMed  Google Scholar 

  4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang TC-CJ, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  5. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M et al (1996) Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87:1539–1548

    CAS  PubMed  Google Scholar 

  6. Huff CA, Matsui W, Smith BD, Jones RJ (2006) The paradox of response and survival in cancer therapeutics. Blood 107:431–434

    Article  CAS  PubMed  Google Scholar 

  7. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  8. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  9. Refaeli Y, Bhoumik A, Roop DR, Ronai ZA (2009) Melanoma-initiating cells: a compass needed. EMBO Rep. doi:10.1038/embor.2009.184

  10. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  11. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679

    Article  CAS  PubMed  Google Scholar 

  13. Jones RJ, Matsui WH, Smith BD (2004) Cancer stem cells: are we missing the target? J Natl Cancer Inst 96:583–585

    Article  PubMed  Google Scholar 

  14. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  CAS  PubMed  Google Scholar 

  15. Horning SJ (1993) Natural history of and therapy for the indolent non-Hodgkin's lymphomas. Semin Oncol 20:75–88

    CAS  PubMed  Google Scholar 

  16. Durie BG, Jacobson J, Barlogie B, Crowley J (2004) Magnitude of response with myeloma frontline therapy does not predict outcome: importance of time to progression in southwest oncology group chemotherapy trials. J Clin Oncol 22:1857–1863

    Article  PubMed  Google Scholar 

  17. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, Casassus P, Maisonneuve H, Facon T, Ifrah N et al (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med New 335:91–97

    Article  CAS  Google Scholar 

  18. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K, Brown J, Drayson MT, Selby PJ (2003) High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 348:1875–1883

    Article  CAS  PubMed  Google Scholar 

  19. Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD, McCoy J, Dakhil SR, Lanier KS, Chapman RA et al (2006) Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 24:929–936

    Article  CAS  PubMed  Google Scholar 

  20. Levy V, Katsahian S, Fermand JP, Mary JY, Chevret S (2005) A meta-analysis on data from 575 patients with multiple myeloma randomly assigned to either high-dose therapy or conventional therapy. Medicine (Baltimore) 84:250–259

    Article  CAS  Google Scholar 

  21. Koreth J, Cutler CS, Djulbegovic B, Behl R, Schlossman RL, Munshi NC, Richardson PG, Anderson KC, Soiffer RJ, Alyea EP III (2007) High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized controlled trials. Biol Blood Marrow Transplant 13:183–196

    Article  CAS  PubMed  Google Scholar 

  22. Rocha Lima CM, Green MR, Rotche R, Miller WH Jr, Jeffrey GM, Cisar LA, Morganti A, Orlando N, Gruia G, Miller LL (2004) Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol 22:3776–3783

    Article  CAS  PubMed  Google Scholar 

  23. Trump D, Lau YK (2003) Chemotherapy of prostate cancer: present and future. Curr Urol Rep 4:229–232

    Article  PubMed  Google Scholar 

  24. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354:34–43

    Article  CAS  PubMed  Google Scholar 

  25. Matsui WH, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI, Jones RJ (2004) Characterization of clonogenic multiple myeloma cells. Blood 103:2332–2336

    Article  CAS  PubMed  Google Scholar 

  26. Treon SP, Pilarski LM, Belch AR, Kelliher A, Preffer FI, Shima Y, Mitsiades CS, Mitsiades NS, Szczepek AJ, Ellman L et al (2002) CD20-directed serotherapy in patients with multiple myeloma: biologic considerations and therapeutic applications. J Immunother 25:72–81

    Article  PubMed  Google Scholar 

  27. Huff CA, Wang Q, Rogers K, Jung M, Borrello IM, Jones RJ, Matsui W (2008) Correlation of clonogenic cancer stem cell growth with clinical outcomes in multiple myeloma (MM) patients undergoing treatment with high dose cyclophosphamide and rituximab. Proc AACR Late Breaking Abstract: LB:87

  28. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106:13820–13825

    Article  CAS  PubMed  Google Scholar 

  29. Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL, Griffin CA, Smith BD, Jones RJ (2005) Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol 130:373–381

    Article  CAS  PubMed  Google Scholar 

  30. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  31. Harrington L (2004) Does the reservoir for self-renewal stem from the ends? Oncogene 23:7283–7289

    Article  CAS  PubMed  Google Scholar 

  32. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwarz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104:4048–4053

    Article  CAS  PubMed  Google Scholar 

  33. Hao LY, Armanios M, Strong MA, Karim B, Feldser DM, Huso D, Greider CW (2005) Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 123:1121–1131

    Article  CAS  PubMed  Google Scholar 

  34. Dokal I, Vulliamy T (2003) Dyskeratosis congenita: its link to telomerase and aplastic anaemia. Blood Rev 17:217–225

    Article  PubMed  Google Scholar 

  35. Ju Z, Rudolph KL (2006) Telomeres and telomerase in cancer stem cells. Eur J Cancer 42:1197–1203

    Article  CAS  PubMed  Google Scholar 

  36. Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97:515–525

    Article  CAS  PubMed  Google Scholar 

  37. Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Jones.

Additional information

The authors report no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.J. Cancer stem cells—clinical relevance. J Mol Med 87, 1105–1110 (2009). https://doi.org/10.1007/s00109-009-0534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0534-4

Keywords

Navigation