Skip to main content
Log in

The pneumococcus: why a commensal misbehaves

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Several characteristics of Streptococcus pneumoniae (pneumococcus) combine to make it a particularly problematic pathogen. Firstly, the pneumococcus has the capacity to cause disease through the expression of virulence factors such as its polysaccharide capsule and pore-forming toxin. In addition, the pneumococcus is highly adaptable as demonstrated by its ability to acquire and disseminate resistance to multiple antibiotics. Although the pneumococcus is a major cause of disease, the organism is most commonly an “asymptomatic” colonizer of its human host (the carrier state), with transmission occurring exclusively from this reservoir of commensal organisms. Thus, it is unclear how the organism’s virulence and adaptability promote its persistence or host to host spread during its carrier state. This review summarizes current understanding of how these characteristics may contribute to the commensal lifestyle of the pneumococcus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tomasz (1995) Pneumococcus at the gates. New Eng J Med 333:514–515

    Article  CAS  PubMed  Google Scholar 

  2. Musher D (2003) How contagious are common respiratory tract infections? N Engl J Med 348:1256–1266

    Article  PubMed  Google Scholar 

  3. Austrian R (1986) Some aspects of the pneumococcal carrier state. J Antimicrob Chemother 18:35–45

    Article  PubMed  Google Scholar 

  4. Bogaert D, de Groot R, Hermans P (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154

    Article  CAS  PubMed  Google Scholar 

  5. Kilian M, Poulsen K, Blomqvist T, Håvarstein L, Bek-Thomsen M, Tettelin H, Sørensen U (2008) Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 3:e2683

    Article  PubMed  CAS  Google Scholar 

  6. Watson DA, Musher DM (1990) Interuption of capsule production in Streptococcus pneumoniae serotype 3 by insertion of transposon Tn916. Infect Immun 58:3135–3138

    CAS  PubMed  Google Scholar 

  7. Marriott H, Mitchell T, Dockrell D (2008) Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 8:497–550

    Article  CAS  PubMed  Google Scholar 

  8. Maus U, Srivastava M, Paton J, Mack M, Everhart M, Blackwell T, Christman J, Schlondorff D, Seeger W, Lohmeyer J (2004) Pneumolysin-induced lung injury is independent of leukocyte trafficking into the alveolar space. J Immunol 173:1307–1312

    CAS  PubMed  Google Scholar 

  9. Ratner A, Hippe K, Aguilar J, Bender M, Nelson A, Weiser J (2006) Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem 281:12994–12998

    Article  CAS  PubMed  Google Scholar 

  10. King S, Hippe K, Weiser J (2006) Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:961–974

    Article  CAS  PubMed  Google Scholar 

  11. Bender MH, Weiser JN (2006) The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Mol Microbiol 61:526–543

    Article  CAS  PubMed  Google Scholar 

  12. McCool T, Cate T, Moy G, Weiser J (2002) The immune response to pneumococcal proteins during experimental human carriage. J Exp Med 195:359–365

    Article  CAS  PubMed  Google Scholar 

  13. McCool T, Weiser J (2004) Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect Immun 72:5807–5813

    Article  CAS  PubMed  Google Scholar 

  14. Wu H, Virolainen A, Mathews B, King J, Russell M, Briles D (1997) Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb Pathog 23:127–137

    Article  CAS  PubMed  Google Scholar 

  15. Nelson A, Roche A, Gould J, Chim K, Ratner A, Weiser J (2007) Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 75:83–90

    Article  CAS  PubMed  Google Scholar 

  16. Beisswenger C, Lysenko E, Weiser J (2009) Early bacterial colonization induces toll-like receptor-dependent transforming growth factor beta signaling in the epithelium. Infect Immun 77:2212–2220

    Article  CAS  PubMed  Google Scholar 

  17. Beisswenger C, Coyne C, Shchepetov M, Weiser J (2007) Role of p38 MAP kinase and transforming growth factor-beta signaling in transepithelial migration of invasive bacterial pathogens. J Biol Chem 282:28700–28708

    Article  CAS  PubMed  Google Scholar 

  18. Matthias K, Roche A, Standish A, Shchepetov M, Weiser J (2008) Neutrophil-toxin interactions promote antigen delivery and mucosal clearance of Streptococcus pneumoniae. J Immunol 180:6246–6254

    CAS  PubMed  Google Scholar 

  19. van Rossum A, Lysenko E, Weiser J (2005) Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 73:7718–7726

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z, Clarke T, Weiser J (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 119:1899–1909

    CAS  PubMed  Google Scholar 

  21. Standish A, Weiser JN (2009) Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol 183:2602–2609

    Article  CAS  PubMed  Google Scholar 

  22. Weinberger D, Trzciński K, Lu Y, Bogaert D, Brandes A, Galagan J, Anderson P, Malley R, Lipsitch M (2009) Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog 5:e1000476

    Article  PubMed  CAS  Google Scholar 

  23. Sleeman K, Griffiths D, Shackley F, Diggle L, Gupta S, Maiden M, Moxon E, Crook D, Peto T (2006) Capsular serotype-specific attack rates and duration of carriage of Streptococcus pneumoniae in a population of children. J Infect Dis 194:682–688

    Article  PubMed  Google Scholar 

  24. Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG (2003) Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis 187:1424–1432

    Article  CAS  PubMed  Google Scholar 

  25. Sjöström K, Blomberg C, Fernebro J, Dagerhamn J, Morfeldt E, Barocchi M, Browall S, Moschioni M, Andersson M, Henriques F et al (2007) Clonal success of piliated penicillin nonsusceptible pneumococci. Proc Natl Acad Sci U S A 104:12907–12912

    Article  PubMed  CAS  Google Scholar 

  26. Weiser J, Austrian R, Sreenivasan P, Masure H (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589

    CAS  PubMed  Google Scholar 

  27. Cundell DR, Weiser JN, Shen J, Young A, Tuomanen EI (1995) Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect Immun 63:757–761

    CAS  PubMed  Google Scholar 

  28. Kim JO, Romero-Steiner S, Sørensen U, Blom J, Carvalho M, Barnardi S, Carlone G, Weiser JN (1999) Relationship between cell-surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae. Infec Immun 67:2327–2333

    CAS  Google Scholar 

  29. Weiser J, Bae D, Epino H, Gordon S, Kapoor M, Zenewicz L, Shchepetov M (2001) Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect Immun 69:5430–5439

    Article  CAS  PubMed  Google Scholar 

  30. Klugman K (2009) The significance of serotype replacement for pneumococcal disease and antibiotic resistance. Adv Exp Med Biol 634:121–128

    PubMed  Google Scholar 

  31. Dawid S, Roche A, Weiser J (2007) The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect Immun 75:443–451

    Article  CAS  PubMed  Google Scholar 

  32. Dawid S, Sebert M, Weiser J (2009) Bacteriocin activity of Streptococcus pneumoniae is controlled by the serine protease HtrA via posttranscriptional regulation. J Bacteriol 191:1509–1518

    Article  CAS  PubMed  Google Scholar 

  33. Lysenko E, Ratner A, Nelson A, Weiser J (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathogens 1:1–9

    Article  CAS  Google Scholar 

  34. Lysenko E, Clarke T, Shchepetov M, Ratner A, Roper D, Dowson C, Weiser J (2007) Nod1-signaling overcomes resistance of Streptococcus pneumoniae to opsonophagocytic killing. PLoS Pathog 3:1073–1081

    Article  CAS  Google Scholar 

  35. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G et al (2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51:1051–1070

    Article  CAS  PubMed  Google Scholar 

  36. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C, Masure HR (1996) Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19:803–813

    Article  CAS  PubMed  Google Scholar 

  37. Pericone C, Overweg K, PW H, Weiser J (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68:3990–3997

    Article  CAS  PubMed  Google Scholar 

  38. Regev-Yochay G, Trzcinsk IK, Thompson C, Malley R, Lipsitch M (2006) Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J Bacteriol 188:4996–5001

    Article  CAS  PubMed  Google Scholar 

  39. Park B, Nizet V, Liu G (2008) Role of Staphylococcus aureus catalase in niche competition against Streptococcus pneumoniae. J Bacteriol 190:2275–2278

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmann O, Zweigner J, Smith S, Freyer D, Mahrhofer C, Dagand E, Tuomanen E, Weber J (2006) Interplay of pneumococcal hydrogen peroxide and host-derived nitric oxide. Infect Immun 74:5058–5066

    Article  CAS  PubMed  Google Scholar 

  41. Feldman C, Anderson R, Cockeran R, Mitchell T, Cole P, Wilson R (2002) The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respir Med 96:580–585

    Article  CAS  PubMed  Google Scholar 

  42. Pericone C, Bae D, Shchepetov M, McCool T, Weiser J (2002) Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumoniae. J Bacteriol 184:4392–4399

    Article  CAS  PubMed  Google Scholar 

  43. Davidson R, Cavalcanti R, Brunton J, Bast D, De Azavedo J, Kibsey P, Fleming C, Low D (2002) Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 346:747–750

    Article  PubMed  Google Scholar 

  44. Dowson C, Coffey T, Spratt B (1994) Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to beta-lactam antibiotics. Trends Microbiol 2:361–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is indebted to the current and former members of his laboratory contributing to these studies. This work was supported by grants from the U.S. Public Health Service (AI44231, AI38446, and AI78538).

Conflict of interest statement

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Weiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiser, J.N. The pneumococcus: why a commensal misbehaves. J Mol Med 88, 97–102 (2010). https://doi.org/10.1007/s00109-009-0557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0557-x

Keywords

Navigation