Skip to main content

Advertisement

Log in

Dynamin 2 and human diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Dynamin 2 (DNM2) mutations cause autosomal dominant centronuclear myopathy, a rare form of congenital myopathy, and intermediate and axonal forms of Charcot–Marie-Tooth disease, a peripheral neuropathy. DNM2 is a large GTPase mainly involved in membrane trafficking through its function in the formation and release of nascent vesicles from biological membranes. DNM2 participates in clathrin-dependent and clathrin-independent endocytosis and intracellular membrane trafficking (from endosomes and Golgi apparatus). Recent studies have also implicated DNM2 in exocytosis. DNM2 belongs to the machinery responsible for the formation of vesicles and regulates the cytoskeleton providing intracellular vesicle transport. In addition, DNM2 tightly interacts with and is involved in the regulation of actin and microtubule networks, independent from membrane trafficking processes. We summarize here the molecular, biochemical, and functional data on DNM2 and discuss the possible pathophysiological mechanisms via which DNM2 mutations can lead to two distinct neuromuscular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PI4,5P2:

phophatidylinositol 4,5-bisphosphate

PI3,4,5P3:

phophatidylinositol 3,4,5-triphosphate

PI3,4P2:

phophatidylinositol 3,4-bisphosphate

PI4P:

phophatidylinositol 4-monophosphate

PI3P:

phophatidylinositol 3-monophosphate

LPA:

lysophosphatidic acid

GLUT4:

glucose transporter 4

TGN:

trans-Golgi network

BAR:

Bin1/Amphiphysin/RVS167

References

  1. Heymann JA, Hinshaw JE (2009) Dynamins at a glance. J Cell Sci 122:3427–3431

    CAS  PubMed  Google Scholar 

  2. Zuchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, Merory J, Oliveira SA, Speer MC, Stenger JE, Walizada G, Zhu D, Pericak-Vance MA, Nicholson G, Timmerman V, Vance JM (2005) Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie-Tooth disease. Nat Genet 37:289–294

    PubMed  Google Scholar 

  3. Bitoun M, Maugenre S, Jeannet PY, Lacène E, Ferrer X, Laforêt P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genet 37:1207–1209

    CAS  PubMed  Google Scholar 

  4. Sontag JM, Fykse EM, Ushkaryov Y, Liu JP, Robinson PJ, Sudhof TC (1994) Differential expression and regulation of multiple dynamins. J Biol Chem 269:4547–4554

    CAS  PubMed  Google Scholar 

  5. Lin HC, Barylko B, Achiriloaie M, Albanesi JP (1997) Phosphatidylinositol (4, 5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. J Biol Chem 272:25999–26004

    CAS  PubMed  Google Scholar 

  6. Rappoport JZ, Simon SM (2003) Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116:847–855

    CAS  PubMed  Google Scholar 

  7. Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99:6358–6363

    CAS  PubMed  Google Scholar 

  8. Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci USA 91:644–648

    CAS  PubMed  Google Scholar 

  9. Diatloff-Zito C, Gordon AJ, Duchaud E, Merlin G (1995) Isolation of an ubiquitously expressed cDNA encoding human dynamin II, a member of the large GTP-binding protein family. Gene 163:301–306

    CAS  PubMed  Google Scholar 

  10. Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609

    CAS  PubMed  Google Scholar 

  11. Bitoun M, Durieux AC, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V, Urtizberea A, Cartier L, Romero NB, Guicheney P (2009) Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis. Hum Mutat 30:1419–1427

    CAS  PubMed  Google Scholar 

  12. Smirnova E, Shurland DL, Newman-Smith ED, Pishvaee B, van der Bliek AM (1999) A model for dynamin self-assembly based on binding between three different protein domains. J Biol Chem 274:14942–14947

    CAS  PubMed  Google Scholar 

  13. Chen YJ, Zhang P, Egelman EH, Hinshaw JE (2004) The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol 11:574–575

    CAS  PubMed  Google Scholar 

  14. Dong J, Misselwitz R, Welfle H, Westermann P (2000) Expression and purification of dynamin II domains and initial studies on structure and function. Protein Expr Purif 20:314–323

    CAS  PubMed  Google Scholar 

  15. Klein DE, Lee A, Frank DW, Marks MS, Lemmon MA (1998) The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 273:27725–27733

    CAS  PubMed  Google Scholar 

  16. Sever S, Muhlberg AB, Schmid SL (1999) Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 398:481–486

    CAS  PubMed  Google Scholar 

  17. Warnock DE, Baba T, Schmid SL (1997) Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Mol Biol Cell 8:2553–2562

    CAS  PubMed  Google Scholar 

  18. Eccleston JF, Binns DD, Davis CT, Albanesi JP, Jameson DM (2002) Oligomerization and kinetic mechanism of the dynamin GTPase. Eur Biophys J 31:275–282

    CAS  PubMed  Google Scholar 

  19. Soulet F, Yarar D, Leonard M, Schmid SL (2005) SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 16:2058–2067

    CAS  PubMed  Google Scholar 

  20. Solomaha E, Palfrey HC (2005) Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence. Biochem J 391:601–611

    CAS  PubMed  Google Scholar 

  21. Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD (2004) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400

    CAS  PubMed  Google Scholar 

  22. Efendiev R, Yudowski GA, Zwiller J, Leibiger B, Katz AI, Berggren PO, Pedemonte CH, Leibiger IB, Bertorello AM (2002) Relevance of dopamine signals anchoring dynamin-2 to the plasma membrane during Na+, K+-ATPase endocytosis. J Biol Chem 277:44108–44114

    CAS  PubMed  Google Scholar 

  23. Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan LJ, Semela D, Mukhopadhyay D, Shah V (2007) Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 120:492–501

    CAS  PubMed  Google Scholar 

  24. Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104

    CAS  PubMed  Google Scholar 

  25. Cousin MA, Robinson PJ (2000) Ca(2+) influx inhibits dynamin and arrests synaptic vesicle endocytosis at the active zone. J Neurosci 20:949–957

    CAS  PubMed  Google Scholar 

  26. Cook TA, Mesa KJ, Gebelein BA, Urrutia RA (1996) Upregulation of dynamin II expression during the acquisition of a mature pancreatic acinar cell phenotype. J Histochem Cytochem 44:1373–1378

    CAS  PubMed  Google Scholar 

  27. Cook T, Mesa K, Urrutia R (1996) Three dynamin-encoding genes are differentially expressed in developing rat brain. J Neurochem 67:927–931

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Purohit V, Yoburn BC (2005) Continuous opioid agonist treatment dose-dependently regulates mu-opioid receptors and dynamin-2 in mouse spinal cord. Synapse 56:123–128

    CAS  PubMed  Google Scholar 

  29. Rajashekara V, Patel CN, Patel K, Purohit V, Yoburn BC (2003) Chronic opioid antagonist treatment dose-dependently regulates mu-opioid receptors and trafficking proteins in vivo. Pharmacol Biochem Behav 75:909–913

    CAS  PubMed  Google Scholar 

  30. Lundmark R, Carlsson SR (2004) Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. J Biol Chem 279:42694–42702

    CAS  PubMed  Google Scholar 

  31. Lundmark R, Carlsson SR (2005) Expression and properties of sorting nexin 9 in dynamin-mediated endocytosis. Methods Enzymol 404:545–556

    CAS  PubMed  Google Scholar 

  32. Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4, 5-bisphosphate. Proc Natl Acad Sci USA 104:3793–3798

    CAS  PubMed  Google Scholar 

  33. Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, Schmid SL (2009) Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol 7:e57

    PubMed  Google Scholar 

  34. Gold ES, Underhill DM, Morrissette NS, Guo J, McNiven MA, Aderem A (1999) Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190:1849–1856

    CAS  PubMed  Google Scholar 

  35. Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141:85–99

    CAS  PubMed  Google Scholar 

  36. Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB (2003) Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 14:4997–5010

    CAS  PubMed  Google Scholar 

  37. Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC, Shah V (2001) Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276:14249–14256

    CAS  PubMed  Google Scholar 

  38. Sanchez FA, Rana R, Kim DD, Iwahashi T, Zheng R, Lal BK, Gordon DM, Meininger CJ, Duran WN (2009) Internalization of eNOS and NO delivery to subcellular targets determine agonist-induced hyperpermeability. Proc Natl Acad Sci USA 106:6849–6853

    CAS  PubMed  Google Scholar 

  39. Cao H, Chen J, Awoniyi M, Henley JR, McNiven MA (2007) Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci 120:4167–4177

    CAS  PubMed  Google Scholar 

  40. Liu YW, Surka MC, Schroeter T, Lukiyanchuk V, Schmid SL (2008) Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol Biol Cell 19:5347–5359

    CAS  PubMed  Google Scholar 

  41. Maier O, Knoblich M, Westermann P (1996) Dynamin II binds to the trans-Golgi network. Biochem Biophys Res Commun 223:229–233

    CAS  PubMed  Google Scholar 

  42. Jones SM, Howell KE, Henley JR, Cao H, McNiven MA (1998) Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279:573–577

    CAS  PubMed  Google Scholar 

  43. Kreitzer G, Marmorstein A, Okamoto P, Vallee R, Rodriguez-Boulan E (2000) Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat Cell Biol 2:125–127

    CAS  PubMed  Google Scholar 

  44. Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA (2005) Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7:483–492

    CAS  PubMed  Google Scholar 

  45. Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B (2006) Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci 119:1504–1516

    CAS  PubMed  Google Scholar 

  46. van Dam EM, Stoorvogel W (2002) Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol Biol Cell 13:169–182

    PubMed  Google Scholar 

  47. Nicoziani P, Vilhardt F, Llorente A, Hilout L, Courtoy PJ, Sandvig K, van Deurs B (2000) Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose 6-phosphate receptor. Mol Biol Cell 11:481–495

    CAS  PubMed  Google Scholar 

  48. Min L, Leung YM, Tomas A, Watson RT, Gaisano HY, Halban PA, Pessin JE, Hou JC (2007) Dynamin is functionally coupled to insulin granule exocytosis. J Biol Chem 282:33530–33536

    CAS  PubMed  Google Scholar 

  49. Arneson LN, Segovis CM, Gomez TS, Schoon RA, Dick CJ, Lou Z, Billadeau DD, Leibson PJ (2008) Dynamin 2 regulates granule exocytosis during NK cell-mediated cytotoxicity. J Immunol 181:6995–7001

    CAS  PubMed  Google Scholar 

  50. Di A, Nelson DJ, Bindokas V, Brown ME, Libunao F, Palfrey HC (2003) Dynamin regulates focal exocytosis in phagocytosing macrophages. Mol Biol Cell 14:2016–2028

    CAS  PubMed  Google Scholar 

  51. Jaiswal JK, Rivera VM, Simon SM (2009) Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137:1308–1319

    PubMed  Google Scholar 

  52. Kessels MM, Engqvist-Goldstein AE, Drubin DG, Qualmann B (2001) Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153:351–366

    CAS  PubMed  Google Scholar 

  53. McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151:187–198

    CAS  PubMed  Google Scholar 

  54. Schafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, Cooper JA (2002) Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 12:1852–1857

    CAS  PubMed  Google Scholar 

  55. Mooren OL, Kotova TI, Moore AJ, Schafer DA (2009) Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem 284:23995–24005

    CAS  PubMed  Google Scholar 

  56. Krueger EW, Orth JD, Cao H, McNiven MA (2003) A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14:1085–1096

    CAS  PubMed  Google Scholar 

  57. Schlunck G, Damke H, Kiosses WB, Rusk N, Symons MH, Waterman-Storer CM, Schmid SL, Schwartz MA (2004) Modulation of Rac localization and function by dynamin. Mol Biol Cell 15:256–267

    CAS  PubMed  Google Scholar 

  58. Ezratty EJ, Partridge MA, Gundersen GG (2005) Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 7:581–590

    CAS  PubMed  Google Scholar 

  59. Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A (2008) Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G965–G976

    CAS  PubMed  Google Scholar 

  60. Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron et a (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150:377–389

  61. Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R (2003) Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 14:1074–1084

    CAS  PubMed  Google Scholar 

  62. Yoo J, Jeong MJ, Cho HJ, Oh ES, Han MY (2005) Dynamin II interacts with syndecan-4, a regulator of focal adhesion and stress-fiber formation. Biochem Biophys Res Commun 328:424–431

    CAS  PubMed  Google Scholar 

  63. Tanabe K, Takei K (2009) Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot–Marie-Tooth mutant. J Cell Biol 185:939–948

    CAS  PubMed  Google Scholar 

  64. Hamao K, Morita M, Hosoya H (2009) New function of the proline rich domain in dynamin-2 to negatively regulate its interaction with microtubules in mammalian cells. Exp Cell Res 315:1336–1345

    CAS  PubMed  Google Scholar 

  65. Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA (2004) Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol 6:335–342

    CAS  PubMed  Google Scholar 

  66. Thompson HM, Skop AR, Euteneuer U, Meyer BJ, McNiven MA (2002) The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol 12:2111–2117

    CAS  PubMed  Google Scholar 

  67. Fish KN, Schmid SL, Damke H (2000) Evidence that dynamin-2 functions as a signal-transducing GTPase. J Cell Biol 150:145–154

    CAS  PubMed  Google Scholar 

  68. Kashiwakura Y, Watanabe M, Kusumi N, Sumiyoshi K, Nasu Y, Yamada H, Sawamura T, Kumon H, Takei K, Daida H (2004) Dynamin-2 regulates oxidized low-density lipoprotein-induced apoptosis of vascular smooth muscle cell. Circulation 110:3329–3334

    CAS  PubMed  Google Scholar 

  69. Soulet F, Schmid SL, Damke H (2006) Domain requirements for an endocytosis-independent, isoform-specific function of dynamin-2. Exp Cell Res 312:3539–3545

    CAS  PubMed  Google Scholar 

  70. Atapattu DN, Albrecht RM, McClenahan DJ, Czuprynski CJ (2008) Dynamin-2-dependent targeting of Mannheimia haemolytica leukotoxin to mitochondrial cyclophilin D in bovine lymphoblastoid cells. Infect Immun 76:5357–5365

    CAS  PubMed  Google Scholar 

  71. Ivanov VN, Ronai Z, Hei TK (2006) Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 281:1840–1852

    CAS  PubMed  Google Scholar 

  72. Kao AW, Yang C, Pessin JE (2000) Functional comparison of the role of dynamin 2 splice variants on GLUT-4 endocytosis in 3T3L1 adipocytes. Am J Physiol Endoc M 278:E825–E831

    CAS  Google Scholar 

  73. Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA (2005) Caveolin-1 interacts directly with dynamin-2. J Mol Biol 348:491–501

    CAS  PubMed  Google Scholar 

  74. Fabrizi GM, Ferrarini M, Cavallaro T, Cabrini I, Cerini R, Bertolasi L, Rizzuto N (2007) Two novel mutations in dynamin-2 cause axonal Charcot–Marie-Tooth disease. Neurology 69:291–295

    CAS  PubMed  Google Scholar 

  75. Bitoun M, Stojkovic T, Prudhon B, Maurage CA, Latour P, Vermersch P, Guicheney P (2008) A novel mutation in the dynamin 2 gene in a Charcot–Marie-Tooth type 2 patient: clinical and pathological findings. Neuromuscul Disord 18:334–338

    PubMed  Google Scholar 

  76. Gallardo E, Claeys KG, Nelis E, Garcia A, Canga A, Combarros O, Timmerman V, De Jonghe P, Berciano J (2008) Magnetic resonance imaging findings of leg musculature in Charcot–Marie-Tooth disease type 2 due to dynamin 2 mutation. J Neurol 255:986–992

    CAS  PubMed  Google Scholar 

  77. Claeys KG, Zuchner S, Kennerson M, Berciano J, Garcia A, Verhoeven K, Storey E, Merory JR, Bienfait HM, Lammens M, Nelis E, Baets J, De Vriendt E, Berneman ZN, De Veuster I, Vance JM, Nicholson G, Timmerman V, De Jonghe P (2009) Phenotypic spectrum of dynamin 2 mutations in Charcot–Marie-Tooth neuropathy. Brain 132:1741–1752

    PubMed  Google Scholar 

  78. Echaniz-Laguna A, Nicot AS, Carre S, Franques J, Tranchant C, Dondaine N, Biancalana V, Mandel JL, Laporte J (2007) Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul Disord 17:955–959

    PubMed  Google Scholar 

  79. Bitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, Lubieniecki F, Cances C, Uro-Coste E, Mayer M, Fardeau M, Romero NB, Guicheney P (2007) Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 62:666–670

    CAS  PubMed  Google Scholar 

  80. Bitoun M, Bevilacqua JA, Eymard B, Prudhon B, Fardeau M, Guicheney P, Romero NB (2009) A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology 72:93–95

    CAS  PubMed  Google Scholar 

  81. Fischer D, Herasse M, Bitoun M, Barragán-Campos HM, Chiras J, Laforêt P, Fardeau M, Eymard B, Guicheney P, Romero NB (2006) Characterization of the muscle involvement in dynamin 2- related centronuclear myopathy. Brain 129:1463–1469

    PubMed  Google Scholar 

  82. Aidaralieva NJ, Kamino K, Kimura R, Yamamoto M, Morihara T, Kazui H, Hashimoto R, Tanaka T, Kudo T, Kida T, Okuda J, Uema T, Yamagata H, Miki T, Akatsu H, Kosaka K, Takeda M (2008) Dynamin 2 gene is a novel susceptibility gene for late-onset Alzheimer disease in non-APOE-epsilon4 carriers. J Hum Genet 53:296–302

    CAS  PubMed  Google Scholar 

  83. Kamagata E, Kudo T, Kimura R, Tanimukai H, Morihara T, Sadik MG, Kamino K, Takeda M (2009) Decrease of dynamin 2 levels in late-onset Alzheimer’s disease alters Abeta metabolism. Biochem Biophys Res Commun 379:691–695

    CAS  PubMed  Google Scholar 

  84. Jeannet PY, Bassez G, Eymard B, Laforet P, Urtizberea JA, Rouche A, Guicheney P, Fardeau M, Romero NB (2004) Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 62:1484–1490

    PubMed  Google Scholar 

  85. Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139

    CAS  PubMed  Google Scholar 

  86. Morris NR (2003) Nuclear positioning: the means is at the ends. Curr Opin Cell Biol 15:54–59

    CAS  PubMed  Google Scholar 

  87. Starr DA, Han M (2003) ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci 116:211–216

    CAS  PubMed  Google Scholar 

  88. Shy ME (2004) Charcot–Marie-Tooth disease: an update. Curr Opin Neurol 17:579–585

    CAS  PubMed  Google Scholar 

  89. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26–38

    PubMed  Google Scholar 

  90. Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196

    CAS  PubMed  Google Scholar 

  91. Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, Jackson AP, Gay NJ, O’Kane CJ (2001) Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in drosophila. Genes Dev 15:2967–2979

    CAS  PubMed  Google Scholar 

  92. Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, Durand M, Kretz C, Danos O, Douar AM, Beggs AH, Schultz P, Montus M, Denefle P, Mandel JL (2008) AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet 17:2132–2143

    CAS  PubMed  Google Scholar 

  93. Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    PubMed  Google Scholar 

  94. Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA 106:18763–18768

    CAS  PubMed  Google Scholar 

  95. Onabajo OO, Seeley MK, Kale A, Qualmann B, Kessels M, Han J, Tan TH, Song W (2008) Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation. J Immunol 180:6685–6695

    CAS  PubMed  Google Scholar 

  96. Nakanishi A, Abe T, Watanabe M, Takei K, Yamada H (2008) Dynamin 2 cooperates with amphiphysin 1 in phagocytosis in sertoli cells. Acta Med Okayama 62:385–391

    CAS  PubMed  Google Scholar 

  97. Kojima C, Hashimoto A, Yabuta I, Hirose M, Hashimoto S, Kanaho Y, Sumimoto H, Ikegami T, Sabe H (2004) Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J 23:4413–4422

    CAS  PubMed  Google Scholar 

  98. Turpin E, Russo-Marie F, Dubois T, de Paillerets C, Alfsen A, Bomsel M (1998) In adrenocortical tissue, annexins II and VI are attached to clathrin coated vesicles in a calcium-independent manner. Biochim Biophys Acta 1402:115–130

    CAS  PubMed  Google Scholar 

  99. Lu HA, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, McKee M, Brown D (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721–28732

    CAS  PubMed  Google Scholar 

  100. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–459

    CAS  PubMed  Google Scholar 

  101. Tosoni D, Cestra G (2009) CAP (Cbl associated protein) regulates receptor-mediated endocytosis. FEBS Lett 583:293–300

    CAS  PubMed  Google Scholar 

  102. Lie PP, Xia W, Wang CQ, Mruk DD, Yan HH, Wong CH, Lee WM, Cheng CY (2006) Dynamin II interacts with the cadherin- and occludin-based protein complexes at the blood-testis barrier in adult rat testes. J Endocrinol 191:571–586

    CAS  PubMed  Google Scholar 

  103. Kim YN, Bertics PJ (2002) The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology 143:1726–1731

    CAS  PubMed  Google Scholar 

  104. Singleton PA, Salgia R, Moreno-Vinasco L, Moitra J, Sammani S, Mirzapoiazova T, Garcia JG (2007) CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem 282:30643–30657

    CAS  PubMed  Google Scholar 

  105. Bruzzaniti A, Neff L, Sanjay A, Horne WC, De Camilli P, Baron R (2005) Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell 16:3301–3313

    CAS  PubMed  Google Scholar 

  106. Hartig SM, Ishikura S, Hicklen RS, Feng Y, Blanchard EG, Voelker KA, Pichot CS, Grange RW, Raphael RM, Klip A, Corey SJ (2009) The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and dynamin-2. J Cell Sci 122:2283–2291

    CAS  PubMed  Google Scholar 

  107. Zhao L, Shi X, Li L, Miller DJ (2007) Dynamin 2 associates with complexins and is found in the acrosomal region of mammalian sperm. Mol Reprod Dev 74:750–757

    CAS  PubMed  Google Scholar 

  108. Okamoto PM, Herskovits JS, Vallee RB (1997) Role of the basic, proline-rich region of dynamin in Src homology 3 domain binding and endocytosis. J Biol Chem 272:11629–11635

    CAS  PubMed  Google Scholar 

  109. Cao S, Yao J, Shah V (2003) The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J Biol Chem 278:5894–5901

    CAS  PubMed  Google Scholar 

  110. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 18:1159–1171

    CAS  PubMed  Google Scholar 

  111. Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N (2004) A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J Biol Chem 279:40091–40099

    CAS  PubMed  Google Scholar 

  112. Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–279

    CAS  PubMed  Google Scholar 

  113. Kharbanda S, Saleem A, Yuan Z, Emoto Y, Prasad KV, Kufe D (1995) Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp 125FAK and dynamin. Proc Natl Acad Sci USA 92:6132–6136

    CAS  PubMed  Google Scholar 

  114. Yoon SY, Koh WS, Lee MK, Park YM, Han MY (1997) Dynamin II associates with Grb2 SH3 domain in Ras transformed NIH3T3 cells. Biochem Biophys Res Commun 234:539–543

    CAS  PubMed  Google Scholar 

  115. Gorska MM, Cen O, Liang Q, Stafford SJ, Alam R (2006) Differential regulation of interleukin 5-stimulated signaling pathways by dynamin. J Biol Chem 281:14429–14439

    CAS  PubMed  Google Scholar 

  116. Xin X, Rabiner CA, Mains RE, Eipper BA (2009) Kalirin12 interacts with dynamin. BMC Neurosci 10:61

    PubMed  Google Scholar 

  117. Bhattacharya R, Kang-Decker N, Hughes DA, Mukherjee P, Shah V, McNiven MA, Mukhopadhyay D (2005) Regulatory role of dynamin-2 in VEGFR-2/KDR-mediated endothelial signaling. FASEB J 19:1692–1694

    CAS  PubMed  Google Scholar 

  118. Rasmussen RK, Rusak J, Price G, Robinson PJ, Simpson RJ, Dorow DS (1998) Mixed-lineage kinase 2-SH3 domain binds dynamin and greatly enhances activation of GTPase by phospholipid. Biochem J 335:119–124

    CAS  PubMed  Google Scholar 

  119. Krendel M, Osterweil EK, Mooseker MS (2007) Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581:644–650

    CAS  PubMed  Google Scholar 

  120. Pizzato M, Helander A, Popova E, Calistri A, Zamborlini A, Palu G, Gottlinger HG (2007) Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc Natl Acad Sci USA 104:6812–6817

    CAS  PubMed  Google Scholar 

  121. Icking A, Matt S, Opitz N, Wiesenthal A, Muller-Esterl W, Schilling K (2005) NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. J Cell Sci 118:5059–5069

    CAS  PubMed  Google Scholar 

  122. Wan KF, Sambi BS, Frame M, Tate R, Pyne NJ (2001) The inhibitory gamma subunit of the type 6 retinal cyclic guanosine monophosphate phosphodiesterase is a novel intermediate regulating p42/p44 mitogen-activated protein kinase signaling in human embryonic kidney 293 cells. J Biol Chem 276:37802–37808

    CAS  PubMed  Google Scholar 

  123. Park JB, Lee CS, Lee HY, Kim IS, Lee BD, Jang IH, Jung YW, Oh YS, Han MY, Jensen ON, Roepstorff P, Suh PG, Ryu SH (2004) Regulation of phospholipase D2 by GTP-dependent interaction with dynamin. Adv Enzyme Regul 44:249–264

    CAS  PubMed  Google Scholar 

  124. Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB (2001) Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem 276:48458–48465

    CAS  PubMed  Google Scholar 

  125. Bruzzaniti A, Neff L, Sandoval A, Du L, Horne WC, Baron R (2009) Dynamin reduces Pyk2 Y402 phosphorylation and SRC binding in osteoclasts. Mol Cell Biol 29:3644–3656

    CAS  PubMed  Google Scholar 

  126. Lundmark R, Carlsson SR (2003) Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J Biol Chem 278:46772–46781

    CAS  PubMed  Google Scholar 

  127. Haberg K, Lundmark R, Carlsson SR (2008) SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1-positive endosomal trafficking. J Cell Sci 121:1495–1505

    PubMed  Google Scholar 

  128. Rufer AC, Rumpf J, von Holleben M, Beer S, Rittinger K, Groemping Y (2009) Isoform-selective interaction of the adaptor protein Tks5/FISH with Sos1 and dynamins. J Mol Biol 390:939–950

    CAS  PubMed  Google Scholar 

  129. Bertelsen V, Breen K, Sandvig K, Stang E, Madshus IH (2007) The Cbl-interacting protein TULA inhibits dynamin-dependent endocytosis. Exp Cell Res 313:1696–1709

    CAS  PubMed  Google Scholar 

  130. Gomez TS, Hamann MJ, McCarney S, Savoy DN, Lubking CM, Heldebrant MP, Labno CM, McKean DJ, McNiven MA, Burkhardt JK, Billadeau DD (2005) Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat Immunol 6:261–270

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Rachel Peat and Dr. Edgar Gomes for helpful advice. Anne-Cécile Durieux was the recipient of a fellowship from the Association Française contre les Myopathies (AFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bitoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durieux, AC., Prudhon, B., Guicheney, P. et al. Dynamin 2 and human diseases. J Mol Med 88, 339–350 (2010). https://doi.org/10.1007/s00109-009-0587-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0587-4

Keywords

Navigation