Skip to main content
Log in

Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Thioredoxins fulfill a number of different important cellular functions in all living organisms. In bacteria, thioredoxin genes are often regulated by external factors. In turn, thioredoxins influence the expression of many other genes. The multiple and important functions of thioredoxins in cells necessitate to appropriately adjust their level. This review outlines different strategies that have evolved for the regulation of bacterial thioredoxin genes. It also summarizes effects of thioredoxins on gene regulation and presents a recent model for a redox-dependent gene regulation that is mediated by thioredoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  CAS  Google Scholar 

  • Aslund F, Beckwith J (1999) The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. j Bacteriol 181:1375–1379

    PubMed  CAS  Google Scholar 

  • Aslund F, Berndt KD, Holmgren A (1997) Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein–protein redox equilibria. J Biol Chem 272:30780–30786

    Article  PubMed  CAS  Google Scholar 

  • Bae JB, Park JH, Hahn MY, Kim MS, Roe JH (2004) Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide band formation. J Mol Biol 335:425–435

    Article  PubMed  CAS  Google Scholar 

  • Boschi-Muller S, Azza S, Sanglier-Cianferani S, Talfournier F, van Dorsselear A, Branlant G (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J Biol Chem 275:35908–35913

    Article  PubMed  CAS  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    Article  PubMed  CAS  Google Scholar 

  • Capitani G, Markovic-Housley Z, DelVal G, Morris M, Jansonius JN, Schurmann P (2000) Crystal structures of two functionally different thioredoxins in spinach chloroplasts. J Mol Biol 302:135–154

    Article  PubMed  CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    PubMed  CAS  Google Scholar 

  • Clement-Metral JD (1979) Activation of ALA synthetase by reduced thioredoxin in Rhodopseudomonas sphaeroides Y. FEBS Lett 101:116–120

    Article  PubMed  CAS  Google Scholar 

  • Collet JF, D Souza JC, Jakob U, Bardwell JC (2003) Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J Biol Chem 14:45325–45332

    Article  CAS  Google Scholar 

  • Comtois SL, Gidley MD, Kelly DJ (2003) Role of thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 149:121–129

    Article  PubMed  CAS  Google Scholar 

  • Das KC, Das CK (2000) Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. Biochem Biophys Res Commun 277:443–447

    Article  PubMed  CAS  Google Scholar 

  • Demple B (1996) Redox signalling and gene control in the Escherichia coli soxRS oxidative stress regulon—a review. Gene 179:53–57

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Demple B (1998) Thiol-mediated disassembly and reassembly of [2Fe-2S] clusters in the redox-regulated transcription factor SoxR. Biochemistry 49:17280–17286

    Article  Google Scholar 

  • Dorman CJ, Barr GC, Bhriain NN, Higgins CF (1988) DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 170:2816–2826

    PubMed  CAS  Google Scholar 

  • Eklund H, Gleason FK, Holmgren A (1991) Structural and functional relations among thioredoxins of different species. Proteins 11:13–28

    Article  PubMed  CAS  Google Scholar 

  • Franco RJ, Drlica K (1989) Gyrase inhibitors can increase gyrA expression and DNA supercoiling. J Bacteriol 171:6573–6579

    PubMed  CAS  Google Scholar 

  • Gallardo-Madueno R, Leal JF, Dorado G, Holmgren, Lopez-Barea J, Pueyo C (1998) In vivo transcription of nrdAB operon and of grxA and fpg genes is triggered in Escherichia coli lacking both thioredoxin and glutaredoxin 1 or thioredoxin and glutathione, respectively. J Biol Chem 273:18382–18388

    Article  PubMed  CAS  Google Scholar 

  • Garrido EO, Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–13687

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Porqué P, Baldesten A, Reichard P (1970) The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulphate. J Biol Chem 245:2371–2374

    PubMed  Google Scholar 

  • Hausladen A, Privalle CT, Keng T, DeAngelo J, Stamler JS (1996) Nitrosative stress: activation of the transcriptional factor OxyR. Cell 86:719–729

    Article  PubMed  CAS  Google Scholar 

  • Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 44:849–859

    Article  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  • Holmgren A (1995a) Thioredoxin and glutaredoxin systems. J Biol Chem 3:233–316

    Google Scholar 

  • Holmgren A (1995b) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3:239–243

    Article  PubMed  CAS  Google Scholar 

  • Huber HE, Tabor S, Richardson CC (1987) Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J Biol Chem 262:16224–16232

    PubMed  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative stress damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA, Fridovich I (1991) Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266:6957–6965

    PubMed  CAS  Google Scholar 

  • Jobin MP, Garmyn D, Divies C, Guzzo J (1999) Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock. Microbiology 145:1245–1251

    PubMed  CAS  Google Scholar 

  • Kang SW, Chae, HZ, Seo, MS, Kim K, Baines IC, Rhee SG (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273:6297–6302

    Article  PubMed  CAS  Google Scholar 

  • Kang JG, Paget MSB, Seok YJ, Hahn MY, Bae JB, Hahn JS, Leanthous C, Buttner MJ, Roe JH (1999) RsrA, an anti-sigma factor regulated by redox change. EMBO J 18:4292–4298

    Article  PubMed  CAS  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS (2002) OxyR: a molecular cod for redox-related signaling. Cell 109:383–396

    Article  PubMed  CAS  Google Scholar 

  • Kontou M, Will RD, Adelfalk C, Wittig R, Poustka A, Hirsch-Kauffmann M, Schweiger M (2004) Thioredoxin, a regulator of gene expression. Oncogene 23:2146–2152

    Article  PubMed  CAS  Google Scholar 

  • Krause G, Lundstrom J, Barea JL, Pueyo de la Cuesta C, Holmgren A (1991) Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem 266:9494–9500

    PubMed  CAS  Google Scholar 

  • Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A 101:3759–3764

    Article  PubMed  CAS  Google Scholar 

  • Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli. J Biol Chem 239:3436–3444

    PubMed  CAS  Google Scholar 

  • Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185:1967–1975

    Article  PubMed  CAS  Google Scholar 

  • Li W, Stevenson CE, Burton N, Jakimowicz P, Paget MS, Buttner MJ, Lawson DM, Kleanthous C (2002) Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor σR from Streptomyces coelicolor. J Mol Biol 323:225–236

    Article  PubMed  CAS  Google Scholar 

  • Li K, Haertig E, Klug G (2003a) Thioredoxin 2 is involved in oxidative stress defense and redox-dependent expression of photosynthesis genes in Rhodobacter capsulatus. Microbiology 149:419–430

    Article  PubMed  CAS  Google Scholar 

  • Li K, Pasternak C, Klug G (2003b) Expression of the trxA gene for thioredoxin 1 in Rhodobacter sphaeroides during oxidative stress. Arch Microbiol 180:484–489

    Article  PubMed  CAS  Google Scholar 

  • Li W, Bottrill AR, Bibb MJ, Buttner MJ, Paget MS, Kleanthous C (2003c) The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J Mol Biol 333:461–472

    Article  PubMed  CAS  Google Scholar 

  • Li K, Hein S, Zou W, Klug G (2004a) The glutathione–glutaredoxin system in Rhodobacter capsulatus: part of a complex regulatory network controlling defense against oxidative stress. j Bacteriol 186:6800–6808

    Article  PubMed  CAS  Google Scholar 

  • Li K, Pasternak C, Hartig E, Haberzettl K, Maxwell A, Klug G (2004b) Thioredoxin can influence gene expression by affecting gyrase activity. Nucleic Acids Res 32:4563–4575

    Article  PubMed  CAS  Google Scholar 

  • Lillig CH, Prior A, Schwenn JD, Aslund F, Ritz D, Vlamis-Gardikas A, Holmgren A (1999) New thioredoxins and glutaredoxins as electron donors of 3′-phosphoadenylylsulfate reductase. J Biol Chem 274:7695–7698

    Article  PubMed  CAS  Google Scholar 

  • Lim CJ, Daws T, Gerami-Nejad M, Fuchs JA (2000) Growth-phase regulation of the Escherichia coli thioredoxin gene. Biochim Biophys Acta 25:1–6

    Google Scholar 

  • Lindahl M, Florencio FJ (2003) Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc Natl Acad Sci U S A 100:16107–16112

    Article  PubMed  CAS  Google Scholar 

  • Manganelli R, Voskuil MI, Schoolnik GK, Dubnau E, Gomez M, Smith I (2002) Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium tubercolosis global gene expression. Mol Microbiol 45:365–374

    Article  PubMed  CAS  Google Scholar 

  • Mark DF, Richardson CC (1976) Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A 73:780–784

    Article  PubMed  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin—a fold for all reasons. Structure 3:245–250

    Article  PubMed  CAS  Google Scholar 

  • McGee DJ, Kumar S, Viator RJ, Bolland JR, Ruiz J, Spadafora D, Testerman TL, Kelly DJ, Pannell LK, Windle HJ (2006) Helicobacter pylori thioredoxin is an arginase chaperone and guardian against oxidative and nitrosative stresses. J Biol Chem 281:3290–3296

    Article  PubMed  CAS  Google Scholar 

  • Messner KR, Imlay JA (1999) The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274:10119–10128

    Article  PubMed  CAS  Google Scholar 

  • Michan C, Manchado M, Dorado G, Pueyo C (1999) In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress. j Bacteriol 181:2759–2764

    PubMed  CAS  Google Scholar 

  • Miranda-Vizuete A, Damdimopoulos AE, Gustafsson J, Spyrou G (1997) Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. J Biol Chem 272:30841–30847

    Article  PubMed  CAS  Google Scholar 

  • Muller EG, Buchanan BB (1989) Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans. J Biol Chem 264:4008–4014

    PubMed  CAS  Google Scholar 

  • Nakano S, Nakano MM, Zhang Y, Leelakriangsak M, Zuber P (2003a) A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc Natl Acad Sci U S A 100:4233–4238

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Kuster-Schock E, Grossman AD, Zuber P (2003b) Spx-dependent global transcriptional control is induced by thiol-specific stress in Bacillus subtilis. Proc Natl Acad Sci USA 100:13603–13608

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Erwin KN, Ralle M, Zuber P (2005) Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol Microbiol 55:498–510

    Article  PubMed  CAS  Google Scholar 

  • Navarro F, Florencio FJ (1996) The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth. Plant Physiol 111:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Nunoshiba T (1996) Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli. Crit Rev Eukaryot Gene Expr 6:377–389

    PubMed  CAS  Google Scholar 

  • Orr MD, Vitols E (1966) Thioredoxin from Lactobacillus leichmannii and its role as hydrogen donor for ribonucleoside triphosphate reductase. Biochem Biophys Res Commun 25:109–115

    Article  PubMed  CAS  Google Scholar 

  • Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121

    Article  PubMed  CAS  Google Scholar 

  • Paget MS, Kang J-G, Roe J-H, Buttner MJ (1998) SigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor. EMBO J 17:5776–57782

    Article  PubMed  CAS  Google Scholar 

  • Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ (2001) Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigma R regulon. Mol Microbiol 42:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Pasternak C, Assemat K, Breton AM, Clement-Metral JD, Klug G (1996) Expression of the thioredoxin gene (trxA) in Rhodobacter sphaeroides Y is regulated by oxygen. Mol Gen Genet 250:189–196

    PubMed  CAS  Google Scholar 

  • Pasternak C, Assemat K, Clement-Metral JD, Klug G (1997) Thioredoxin is essential for Rhodobacter sphaeroides growth by aerobic and anaerobic respiration. Microbiology 143:83–91

    Article  PubMed  CAS  Google Scholar 

  • Pasternak C, Haberzettl K, Klug G (1999) Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides. j Bacteriol 181:100–106

    PubMed  CAS  Google Scholar 

  • Prieto-Alamo MJ, Jurado J, Gallardo-Madueno R, Monje-Casas F, Holmgren A, Pueyo C (2000) Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress. J Biol Chem 275:13398–13405

    Article  PubMed  CAS  Google Scholar 

  • Raman S, Song T, Puyang X, Bardarov S, Jacobs WR, Husson RN (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. j Bacteriol 183:6119–6125

    Article  PubMed  CAS  Google Scholar 

  • Ritz D, Patel H, Doan B, Zheng M, Aslund F, Storz G, Beckwith J (2000) Thioredoxin 2 is involved in the oxidative stress response in E. coli. J Biol Chem 275:2502–2512

    Article  Google Scholar 

  • Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48

    Article  PubMed  CAS  Google Scholar 

  • Russel M, Model P (1985) Thioredoxin is required for filamentous phage assembly. Proc Natl Acad Sci U S A 82:29–33

    Article  PubMed  CAS  Google Scholar 

  • Russel M, Model P, Holmgren A (1990) Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. j Bacteriol 172:1923–1929

    PubMed  CAS  Google Scholar 

  • Sa JH, Namgung MA, Lim CJ, Fuchs JA (1997) Expression of the Escherichia coli thioredoxin gene is negatively regulated by cyclic AMP. Biochem Biophys Res Commun 234:564–567

    Article  PubMed  CAS  Google Scholar 

  • Scharf C, Riethdorf S, Ernst H, Engelmann S, Volker U, Hecker M (1998) Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. j Bacteriol 180:1869–1877

    PubMed  CAS  Google Scholar 

  • Schneider R, Travers A, Muskhelishvili G (2000) The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol Microbiol 38:167–175

    Article  PubMed  CAS  Google Scholar 

  • Seaver LC, Imlay JA (2004) Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 279:48742–48750

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1985) Oxidative stress. Academic, London

    Google Scholar 

  • Smits WK, Dubois JY, Bron S, van Dijl JM, Kuipers OP (2005) Tricksy business: transcriptome analysis reveals the involvement of thioredoxin A in redox homeostasis, oxidative stress, sulfur metabolism, and cellular differentiation in Bacillus subtilis. j Bacteriol 187:3921–3930

    Article  PubMed  CAS  Google Scholar 

  • Spector A, Yan GZ, Huang RR, McDermott MJ, Gascoyne PR, Pigiet V (1988) The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem 263:4984–4990

    PubMed  CAS  Google Scholar 

  • Storz G, Zheng M (2000) Oxidative stress. In: Bacterial stress responses. ASM Press, Washington, DC, pp 47–59

    Google Scholar 

  • Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194

    Article  PubMed  CAS  Google Scholar 

  • Tao K, Fujita N, Ishihama A (1993) Involvement of the RNA polymerase alpha subunit C-terminal region in co-operative interaction and transcriptional activation with OxyR protein. Mol Microbiol 7:859–864

    Article  PubMed  CAS  Google Scholar 

  • Toledano MB, Kullik I, Trinh F, Baird PT, Schneider T, Storz G (1994) Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909

    Article  PubMed  CAS  Google Scholar 

  • Uziel O, Borovok I, Schreiber R, Cohen G, Aharonowitz Y (2004) Transcriptional regulation of the Staphylococcus areus thioredoxin and thioredoxin genes in response to oxygen and disulfide stress. j Bacteriol 186:326–334

    Article  PubMed  CAS  Google Scholar 

  • Varghese S, Tang Y, Imlay JA (2003) Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. j Bacteriol 185:221–230

    Article  PubMed  CAS  Google Scholar 

  • Vido K, Diemer H, Van Dorsselaer A, Leize E, Juillard V, Gruss A, Gaudu P (2005) Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. j Bacteriol 187:601–610

    Article  PubMed  CAS  Google Scholar 

  • Wieles B, Ottenhoff TH, Steenwijk TM, Franken KL, de Vries RR, Langermans JA (1997) Increased intracellular survival of Mycobacterium smegmatis containing the Mycobacterium leprae thioredoxin–thioredoxin reductase gene. Infect Immunol 65:2537–2541

    CAS  Google Scholar 

  • Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. j Bacteriol 183:4562–4570

    Article  PubMed  CAS  Google Scholar 

  • Zhu YS, Hearst JE (1988) Transcription of oxygen-regulated photosynthetic genes requires DNA gyrase in Rhodobacter capsulatus. Proc Natl Acad Sci U S A 85:4209–4213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work from the authors was supported by the Deutsche Forschungsgemeinschaft (Kl563/16), the Fonds der chemischen Industrie, the BMBF, and the DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Klug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, T., Klug, G. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93, 259–266 (2006). https://doi.org/10.1007/s00114-006-0106-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0106-1

Keywords

Navigation