Skip to main content
Log in

Women infected with parasite Toxoplasma have more sons

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The boy-to-girl ratio at birth (secondary sex ratio) is around 0.51 in most populations. The sex ratio varies between societies and may be influenced by many factors, such as stress and immunosuppression, age, primiparity, the sex of the preceding siblings and the socioeconomic status of the parents. As parasite infection affects many immunological and physiological parameters of the host, we analyzed the effect of latent toxoplasmosis on sex ratios in humans. Clinical records of 1,803 infants born from 1996 to 2004 contained information regarding the mother’s age, concentration of anti-Toxoplasma antibodies, previous deliveries and abortions and the sex of the newborn. The results of our retrospective cohort study suggest that the presence of one of the most common parasites (with a worldwide prevalence from 20 to 80%), Toxoplasma gondii, can influence the secondary sex ratio in humans. Depending on the antibody concentration, the probability of the birth of a boy can increase up to a value of 0.72, C.I.95 = (0.636, 0.805), which means that for every 260 boys born, 100 girls are born to women with the highest concentration of anti-Toxoplasma antibodies. The toxoplasmosis associated with immunosuppression or immunomodulation might be responsible for the enhanced survival of male embryos. In light of the high prevalence of latent toxoplasmosis in most countries, the impact of toxoplasmosis on the human population might be considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Beatie CP (1982) The ecology of toxoplasmosis. Ecol Dis 1(1):13–20

    Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (1995) Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology 111:403–409

    PubMed  Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc R Soc Lond B Biol Sci 267:1591–1594

    Article  CAS  Google Scholar 

  • Brown JE (1969) Field experiments on the movements of Apodemus sylvaticus L., using trapping and tracking techniques. Oecologia 2:198–222

    Article  Google Scholar 

  • Chacon-Pugnau GC, Jaffe K (1996) Sex ratio at birth deviations in modern Venezuela: the Trivers–Willard effect. Soc Biol 43:257–270

    Google Scholar 

  • Christiansen OB, Pedersen B, Nielsen HS, Andersen AMN (2004) Impact of the sex of first child on the prognosis in secondary recurrent miscarriage. Hum Reprod 19:2946–2951

    Article  PubMed  CAS  Google Scholar 

  • Čiháková J, Frynta D (1996) Intraspecific and interspecific behavioural interactions in the wood mouse (Apodemus sylvaticus) and the yellow-necked mouse (Apodemus flavicollis) in a neutral cage. Folia Zool 45:105–113

    Google Scholar 

  • Davis DL, Gottlieb MB, Stampnitzky JR (1998) Reduced ratio of male to female births in several industrial countries: a sentinel health indicator? JAMA 279(13):1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Dunn AM, Terry RS, Smith JE (2001) Transovarial transmission in the microsporidia. Adv Parasitol 48:57–100

    Article  PubMed  CAS  Google Scholar 

  • Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303

    Article  PubMed  CAS  Google Scholar 

  • Evdokimova VN, Nikita TV, Lebedev IN, Sukhanova NN, Nazarenko SA (2000) Sex ratio in early embryonal mortality in man. Ontogenez 31:251–257

    PubMed  CAS  Google Scholar 

  • Filisetti D, Candolfi E (2004) Immune response to Toxoplasma gondii. Ann Ist Super Sanità 40:71–80

    PubMed  CAS  Google Scholar 

  • Flegr J, Zitkova S, Kodym P, Frynta D (1996) Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology 113:49–54

    PubMed  Google Scholar 

  • Flegr J, Havlíček J, Kodym P, Maly M, Smahel Z (2002) Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case-control study. BMC Infect Dis 2:art–11

    Article  Google Scholar 

  • Flegr J, Hrdá Š, Kodym P (2005) Influence of latent toxoplasmosis on human health. Folia Parasitol 52:199–204

    PubMed  Google Scholar 

  • Frynta D (1994) Exploratory behaviour in 12 Palaearctic mice species (Rodentia: Muridae): A comparative study using “free exploration” test. Acta Soc Zool Bohem 57:173–182

    Google Scholar 

  • Frynta D, Slábová M, Volfová R, Třeštíková H, Munclinger P (2005) Aggression and commensalism in house mouse: a comparative study across Europe and Near East. Aggress Behav 31:283–293

    Article  Google Scholar 

  • Grant V (1998) Maternal personality, evolution and the sex ratio: do mothers control the sex of the infant? Routledge, London

    Google Scholar 

  • Havlíček J, Gašová Z, Smith AP, Zvára KJ, Flegr J (2001) Decrease of psychomotor performance in subjects with latent “asymptomatic” toxoplasmosis. Parasitology 122:515–520

    Article  PubMed  Google Scholar 

  • Hostomská L, Jírovec O, Horáěková M, Hrubcová M (1957) Účast toxoplasmické infekce matky při vniku mongoloidismu dítěte. (The role of toxoplasmosis in the mother in the development of mongolism in the child). Českoslov Pediatr 12:713–723

    Google Scholar 

  • Hutchinson WM, Bradley M, Cheyne WM, Wells BWP, Hay J (1980) Behavioural abnormalities in Toxoplasma-infected mice. Ann Tropic Med Parasitol 74:337–345

    CAS  Google Scholar 

  • Jacobsen R, Moller H, Mouritsen A (1999) Natural variation in the human sex ratio. Hum Reprod 14:3120–3125

    Article  PubMed  CAS  Google Scholar 

  • James WH (1996) Evidence that mammalian sex ratio at birth are partially controlled by parental hormone levels at the time of conception. J Theor Biol 180:271–286

    Article  PubMed  CAS  Google Scholar 

  • James WH (2006) Offspring sex ratio at birth as markers of paternal endocrine disruption. Environ Res 100:77–85

    Article  PubMed  CAS  Google Scholar 

  • Kellokumpu-Lehtinen P, Pelliniemi LJ (1984) Sex ratio of human conceptuses. Obst Gynecol 64:220–222

    CAS  Google Scholar 

  • Kirby DRS (1970) The egg and immunology. Proc R Soc Med 63:59

    PubMed  CAS  Google Scholar 

  • Kirby DRS, McWhirter KG, Teitelbaum MS, Darlington CD (1967) A possible immunological influence on sex ratio. Lancet 1:139–140

    Article  Google Scholar 

  • Knight J (2001) Meet the Herod bug. Nature 412:12–14

    Article  PubMed  CAS  Google Scholar 

  • Krackow S (2005) Agonistic onset during development differentiates wild house mouse male (Mus domesticus). Naturwissenschaften 92:78–81

    Article  PubMed  CAS  Google Scholar 

  • Krackow S, Tkadlec E (2001) Analysis of brood sex ratios: implications of offspring clustering. Behav Ecol Sociobiol 50:293–301

    Article  Google Scholar 

  • Milki AA, Jun SH, Hinckley MD, Westphal LW, Giudice LC, Behr B (2003) Comparison of the sex ratio with blastocyst transfer and cleavage stage transfer. J Assist Reprod Genet 20(8):323–326

    Article  PubMed  Google Scholar 

  • Pocock MJO, Hauffe HC, Searle JB (2005) The genus Mus as a model for evolutionary studies. Biol J Linn Soc 84:565–583

    Article  Google Scholar 

  • Renkonen KO, Makela R, Lehtovaara R (1962) Factor affecting the human sex ratio. Nature 194:308

    Article  PubMed  CAS  Google Scholar 

  • Rice WR, Gaines SD (1994) Extending nondirectional heterogeneity tests to evaluate simply ordered alternative hypotheses. Proc Natl Acad Sci USA 91:225–226

    Article  PubMed  CAS  Google Scholar 

  • Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures, 3rd edn. Chapman & Hall, Boca Raton

    Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258

    Article  PubMed  CAS  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  PubMed  CAS  Google Scholar 

  • Vatten LJ, Skjaerven R (2004) Offspring sex and pregnancy outcome by length of gestation. Early Hum Dev 76(1):47–54

    Article  PubMed  Google Scholar 

  • Webster JP (1994) The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology 109:583–589

    Article  PubMed  Google Scholar 

  • Wilson K, Hardy ICW (2001) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex ratios. Cambridge Univ Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors thank M. Maly, A. Kubena and especially S. Krackow for help with statistical analysis and P. Kodym and J. Havlíček for discussion and comments on this manuscript. This research was supported by the Grant Agency of the Czech Republic 206/05/H012 and by the Czech Ministry of Education (grant 0021620828). The study was approved by the IRB Faculty of Science, Charles University, and complied with the current laws of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Flegr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaňková, Š., Šulc, J., Nouzová, K. et al. Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94, 122–127 (2007). https://doi.org/10.1007/s00114-006-0166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0166-2

Keywords

Navigation