Skip to main content

Advertisement

Log in

Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine)

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Biomineralization, biosilicification in particular (i.e. the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches following “nature as model”. Siliceous sponges are unique among silica forming organisms in their ability to catalyze silica formation using a specific enzyme termed silicatein. In this study, we review the present state of knowledge on silicatein-mediated “biosilica” formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in nanobiotechnology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements. Proc Natl Acad Sci USA 82:4110–4114

    PubMed  CAS  Google Scholar 

  • Aizenberg J, Sundar V, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc Natl Acad Sci USA 101:3358–3363

    PubMed  CAS  Google Scholar 

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    PubMed  CAS  Google Scholar 

  • Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV, Miki-Yoshida M, Orrantia-Borunda E, Solis FJ (2003) TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photochem Photobiol B 70:45–50

    PubMed  CAS  Google Scholar 

  • Arndt W (1930) Schwämme-Porifera, spongien. In: Oppenheimer C, Pincussen L (eds) Tabulae biologicae. W. Junk, Berlin, pp 39–120

    Google Scholar 

  • Azam F, Hemmingsen BB, Volcani BE (1973) Germanium incorporation into silica of the diatom cell walls. Arch Mikrobiol 92:11–20

    CAS  Google Scholar 

  • Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    PubMed  CAS  Google Scholar 

  • Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube–nanocrystal heterostructures. Nano Lett 2:195–200

    CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    CAS  Google Scholar 

  • Bäuerlein E (2004) Biomineralization. Wiley–VCH, Cambridge

    Google Scholar 

  • Belikov SI, Kaluzhnaya OV, Schröder HC, Krasko A, Müller IM, Müller WEG (2005) Expression of silicatein in spicules from the Baikalian sponge Lubomirskia baicalensis. Cell Biol Int 29:943–951

    PubMed  CAS  Google Scholar 

  • Belton D, Paine G, Patwardhan SV, Perry CC (2004) Towards an understanding of (bio)silicification: The role of amino acids and lysine oligomers in silicification. J Mater Chem 14:2231–2241

    CAS  Google Scholar 

  • Belton D, Patwardhan SV, Perry CC (2005a) Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem Commun 27:3475–3477

    Google Scholar 

  • Belton DJ, Patwardhan SV, Perry CC (2005b) Spermine, spermidine and their analogues generate tailored silicas. J Mater Chem 15:4629–4638

    CAS  Google Scholar 

  • Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Microcontact printing of proteins. Adv Mater 12:1067–1070

    CAS  Google Scholar 

  • Bhattacharyya P, Vulcani BE (1980) Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proc Natl Acad Sci USA 77:6386–6390

    PubMed  CAS  Google Scholar 

  • Braun J, Baidins A, Marganski RE (1992) TiO2 pigment technology: a review. Prog Org Coat 20:105–138

    CAS  Google Scholar 

  • Brinker CJ, Scherrer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, London

    Google Scholar 

  • Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sarà A, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398

    CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    PubMed  CAS  Google Scholar 

  • Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403:289–292

    PubMed  CAS  Google Scholar 

  • Choi HC, Shim M, Bangsaruntip S, Dai H (2002) Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 124:9058–9059

    PubMed  CAS  Google Scholar 

  • Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–708

    PubMed  CAS  Google Scholar 

  • Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2419

    PubMed  CAS  Google Scholar 

  • Croce G, Frache A, Milanesio M, Marchese L, Causà M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H (2004) Structural characterization of siliceous spicules from marine sponges. Biophys J 86:526–534

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    PubMed  CAS  Google Scholar 

  • Curnow P, Bessette PH, Kisailus D, Murr MM, Daugherty PS, Morse DE (2005) Enzymatic synthesis of layered titanium phosphates at low temperature and neutral pH by cell-surface display of silicatein-alpha. J Am Chem Soc 127:15749–15755

    PubMed  CAS  Google Scholar 

  • Curnow P, Kisailus D, Morse DE (2006) Biocatalytic synthesis of poly(l-lactide) by native and recombinant forms of the silicatein enzymes. Angew Chem Int Ed Engl 45:613–616

    PubMed  CAS  Google Scholar 

  • Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brümmer F, Nickel M, Müller WEG (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105:45–59

    PubMed  CAS  Google Scholar 

  • Dai Q, He N, Guo Y, Yuan C (1998) High photocatalytic activity of pure TiO2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophenol. Chem Lett 11:1113–1114

    Google Scholar 

  • Dalsin JL, Lin L, Tosatti S, Vörös J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG–DOPA. Langmuir 21:640–646

    PubMed  CAS  Google Scholar 

  • Diehl MR, Yaliraki SN, Beckman RA, Barahona M, Heath JR (2002) Self-assembled, deterministic carbon nanotube wiring networks. Angew Chem Int Ed 41:353–356

    CAS  Google Scholar 

  • Dimitrijevic NM, Saponjic ZV, Rabatic BM, Rajh T (2005) Assembly and charge transfer in hybrid TiO2 architectures using biotin-avidin as a connector. J Am Chem Soc 127:1344–1345

    PubMed  CAS  Google Scholar 

  • Ding H, Ram MK, Nicolini C (2001) Nanofabrication of organic/inorganic hybrids of TiO2 with substituted phthalocyanine or polythiophene. J Nanosci Nanotechnol 1:207–213

    PubMed  CAS  Google Scholar 

  • Eckert C, Schröder HC, Brandt D, Perovic-Ottstadt S, Müller WEG (2006) A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula. J Histochem Cytochem 54:1031–1040

    PubMed  CAS  Google Scholar 

  • Ellis AV, Vijayamohanan K, Goswami R, Chakrapani N, Ramanathan LS, Ajayan PM, Ramanath G (2003) Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett 3:279–282

    CAS  Google Scholar 

  • Elvin DW (1972) Effect of germanium upon development of siliceous spicules of some fresh-water sponges. Exp Cell Res 72:551–553

    PubMed  CAS  Google Scholar 

  • Fullam S, Cottell D, Rensmo H, Fitzmaurice D (2000) Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv Mater 12:1430–1432

    CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005) Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin. Zoological Science 22:1113–1122

    PubMed  CAS  Google Scholar 

  • Gal S, Gottesman MM (1988) Isolation and sequence of a cDNA for human pro-(cathepsin L). Biochem J 253:303–306

    PubMed  CAS  Google Scholar 

  • Gu H, Yang Z, Gao J, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) Swiss-model and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    PubMed  CAS  Google Scholar 

  • Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:3372

    Google Scholar 

  • Hench LL, Wilson JW (1984) Surface-active biomaterials. Science 226:630–636

    PubMed  CAS  Google Scholar 

  • Hildebrandt M, Wetherbee R (2003) Components and control of silicification in diatoms. Prog Mol Subcell Biol 33:11–57

    Google Scholar 

  • Hoppe-Seyler EF (1877) Preface. Z Physiol Chem 1:1

    Google Scholar 

  • Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    PubMed  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005a) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I: biological and biochemical studies. Naturwissenschaften 92:128–133

    PubMed  CAS  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005b) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II: molecular biological studies. Naturwissenschaften 92:134–138

    PubMed  CAS  Google Scholar 

  • Kamphuis IG, Kalk KH, Swarte MBA, Drenth J (1984) Structure of papain refined at 1.65 Å resolution. J Mol Biol 179:233–257

    PubMed  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    CAS  Google Scholar 

  • Katz E, Filanovsky B, Willner I (1999) A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J Chem 23:481–487

    CAS  Google Scholar 

  • Kennish MJ (1994) Practical handbook of marine science. CRC Press, Boca Raton

    Google Scholar 

  • Kisailus D, Choi JH, Weaver JC, Yang W, Morse DE (2005) Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv Mater 17:314–318

    CAS  Google Scholar 

  • Kisailus D, Truong Q, Amemiya Y, Weaver JC, Morse DE (2006) Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci USA 103:5652–5657

    PubMed  CAS  Google Scholar 

  • Krasko A, Gamulin V, Seack J, Steffen R, Schröder HC, Müller WEG (1997) Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Mol Mar Biol Biotechnol 6:296–307

    PubMed  CAS  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    PubMed  CAS  Google Scholar 

  • Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21:67–80

    PubMed  CAS  Google Scholar 

  • Kröger N, Sumper M (2000) The biochemistry of silica formation. In: Bäuerlein E (ed) Biomineralization from biology to biotechnology and medical application. Wiley–VCH, Weinheim, pp 151–170

    Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci USA 97:14133–14138

    PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (2001) Silica-precipitating peptides from diatoms, the chemical structure of silaffin-1a from Cylindotheca fusiformis. J Biol Chem 276:26066–26070

    PubMed  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    PubMed  Google Scholar 

  • Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett 63:2002–2004

    CAS  Google Scholar 

  • Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659

    PubMed  CAS  Google Scholar 

  • Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794

    Google Scholar 

  • Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis. Science 261:1286–1292

    CAS  PubMed  Google Scholar 

  • Mort JS (2002) Cathepsin L. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, Amsterdam, pp 617–624

    Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of metazoa (animals): monophyletic origin. Naturwissenschaften 82:321–329

    PubMed  Google Scholar 

  • Müller WEG (1998) Molecular phylogeny of eumetazoa: genes in sponges [Porifera] give evidence for monophyly of animals. Prog Mol Subcell Biol 19:89–132

    PubMed  Google Scholar 

  • Müller WEG (2001) How was metazoan threshold crossed: the hypothetical urmetazoa. Comp Biochem Physiol 129(A):433–460

    Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio RM (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Progr Ser 178:205–219

    Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Schröder HC (2003a) Biochemistry and cell biology of silica formation in sponges. Microsc Res Tech 62:368–377

    PubMed  Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Steffen R, Wiens M, Ammar MSA, Müller IM, Schröder HC (2003b) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein–collagen–myotrophin. Prog Mol Subcell Biol 33:195–221

    PubMed  Google Scholar 

  • Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) Bauplan of urmetazoa: basis of genetic complexity of metazoa. Int Rev Cytol 235:53–92

    Article  PubMed  Google Scholar 

  • Müller WEG, Borejko A, Brandt D, Osinga R, Ushijima H, Hamer B, Krasko A, Xupeng C, Müller IM, Schröder HC (2005a) Selenium affects biosilica formation in the demosponge Suberites domuncula: effect on gene expression and spicule formation. FEBS 272:3838–3852

    Google Scholar 

  • Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005b) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    PubMed  Google Scholar 

  • Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006a) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    PubMed  Google Scholar 

  • Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006b) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41

    PubMed  Google Scholar 

  • Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schröder HC (2006c) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens Bioelectron 21:1149–1155

    PubMed  Google Scholar 

  • Murr MM, Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102:11657–11662

    PubMed  CAS  Google Scholar 

  • Nelson DM, Tréguer P, Brezinski MA, Leynaert A, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359–372

    CAS  Google Scholar 

  • Niederberger M, Garnweitner G, Krumeich F, Nesper R, Cölfen H, Antonietti M (2004) Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem Mater 16:1202–1208

    CAS  Google Scholar 

  • Nishimura Y, Kawabata T, Kato K (1988) Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Arch Biochem Biophys 261:64–71

    PubMed  CAS  Google Scholar 

  • Pasteur L (1857) Mémoire sur la fermentation appelée lactique. Mém Soc Sci Agric et Arts 5:13–26

    Google Scholar 

  • Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification (feature article). Chem Commun 9:1113–1121

    Google Scholar 

  • Patwardhan SV, Shiba K, Schröder HC, Müller WEG, Clarson SJ, Perry CC (2006) The interaction of ‘silicon’ with proteins—part 2. The role of bioinspired peptide and recombinant proteins in silica polymerisation. ASC Proceedings (in press)

  • Perović-Ottstadt S, Wiens M, Schröder HC, Batel R, Giovine M, Krasko A, Müller IM, Müller WEG (2005) Arginine kinase in the demosponge Suberites domuncula: regulation of its expression and catalytic activity by silicic acid. J Exp Biol 208:637–646

    PubMed  Google Scholar 

  • Perry CC (2003) Silicification: the process by which organisms capture and mineralize silica. Rev Mineral Geochem 54:291–327

    CAS  Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550

    PubMed  CAS  Google Scholar 

  • Perry CC, Belton D, Shafran K (2003) Studies of biosilicas; structural aspects, chemical principles, model studies and the future. Prog Mol Subcell Biol 33:269–299

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3:179–184

    PubMed  CAS  Google Scholar 

  • Pisera A (2003) Some aspects of silica deposition in Lithistid demosponge desmas. Microsc Res Tech 62:312–326

    PubMed  CAS  Google Scholar 

  • Pisignano D, Maruccio G, Mele E, Persano L, Di Benedetto F, Cingolani R (2005) Polymer nanofibers by soft lithography. Appl Phys Lett 87:123109

    Google Scholar 

  • Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi AM, Raheli F, Benatti U, Müller WEG, Giovine M (2004) Molecular cloning of silicatein gene from the marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol 6:594–603

    PubMed  CAS  Google Scholar 

  • Reilly JJ, Mason RW, Chen P, Joseph LJ, Sukhatme VP, Yee R, Chapman HA (1989) Synthesis and processing of cathepsin L, an elastase, by human alveolar macrophages. Biochem J 257:493–498

    PubMed  CAS  Google Scholar 

  • Rosidian A, Liu Y, Claus RO (1998) Ionic self-assembly of ultrahard ZrO2/polymer nanocomposite thin films. Adv Mater 10:1087–1091

    CAS  Google Scholar 

  • Roth KM, Zhou Y, Yang W, Morse DE (2005) Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J Am Chem Soc 127:325–330

    PubMed  CAS  Google Scholar 

  • Sanford F (2003) Physical and chemical analysis of the siliceous skeleton in six sponges of two groups (Demospongiae and Hexactinellida). Micr Res Techn 62:336–355

    Google Scholar 

  • Sato S, Nakamura R, Abe S (2005) Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A 284:131–137

    CAS  Google Scholar 

  • Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031

    PubMed  Google Scholar 

  • Schröder HC, Krasko A, Le Pennec G, Adell T, Wiens M, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:250–268

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004a) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673

    PubMed  Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Wiens M, Batel R, Müller IM, Müller WEG (2004b) Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell Tissue Res 316:271–280

    PubMed  Google Scholar 

  • Schröder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Müller WEG (2005a) Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Materi Res B Appl Biomater 75B:387–392

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG (2005b) Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 85:666–678

    PubMed  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009

    PubMed  Google Scholar 

  • Schulze FE (1904) Hexactinellida. Wiss Ergebn der Deutschen Tiefsee-Expedition. Gustav Fischer, Jena

  • Schulze FE, Lendenfeld Rv (1889) Die Bezeichnung der Spongiennadeln. Georg Reimer, Berlin

    Google Scholar 

  • Schwab DW, Shore RE (1971) Fine structure and composition of a siliceous sponge spicule. Biol Bull 140:125–136

    CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520

    PubMed  CAS  Google Scholar 

  • Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R (2004) Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials 25:1349–1353

    PubMed  CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nature Mater 3:482–488

    CAS  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin l-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Simpson TL, Refolo LM, Kaby M (1979) Effects of germanium on the morphology of silica deposition in a freshwater sponge. J Morphol 159:343–354

    Google Scholar 

  • Simpson TL, Gil M, Connes R, Diaz JP, Paris J (1985) Effects of germanium (Ge) on the silica spicules of the marine sponge Suberites domuncula: transformation of the spicule type. J Morphol 183:117–128

    CAS  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    PubMed  CAS  Google Scholar 

  • Spallanzani L, Senebier J (1784) Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux. B. Chirol, Geneve

  • Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15:1861–1865

    CAS  Google Scholar 

  • Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Google Scholar 

  • Sumerel JL, Yang W, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatalytic structure-directing synthesis of titanium dioxide. Chem Mater 15:4804–4809

    CAS  Google Scholar 

  • Sun Q, Vrieling EG, van Santen RA, Sommerdijk NAJM (2004) Bioinspired synthesis of mesoporous silicas. Curr Opin Solid State Mater Sci 8:111–120

    CAS  Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem Commun 2004:2848–2849

    Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Borejko A, Faiß S, Janshoff A, Huth J, Tremel W (2005a) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem Commun 28:5533–5535

    Google Scholar 

  • Tahir MN, Eberhardt M, Theato P, Faiß S, Janshoff A, Gorelik T, Kolb U, Tremel W (2005b) Reactive polymers: a versatile toolbox for the immobilization of functional molecules on TiO2 nanoparticles. Angew Chem Int Ed 45:908–912

    Google Scholar 

  • Tahir MN, Eberhardt M, Therese HA, Kolb U, Theato P, Müller WEG, Schröder HC, Tremel W (2006) From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface bound silicatein. Angew Chem Int E 45:4803–4809

    CAS  Google Scholar 

  • Tang J, Birkedal H, McFarland EW, Stucky GD (2003) Self-assembly of CdSe/CdS quantum dots by hydrogen bonding on Au surfaces for photoreception. Chem Commun 45:4803–4809

    Google Scholar 

  • Tao K, Stearns NA, Dong J, Wu Q, Sahagian GG (1994) The proregion of cathepsin L is required for proper folding, stability and ER exit. Arch Biochem Biophys 311:19–27

    PubMed  CAS  Google Scholar 

  • Tolbert SH, Firouzi A, Stucky GD, Chmelka BF (1997) Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278:264–268

    CAS  Google Scholar 

  • Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR (2005) Polypeptide-templated synthesis of hexagonal silica platelets. J Am Chem Soc 127:12577–12582

    PubMed  CAS  Google Scholar 

  • Uriz MJ, Turon X, Becerro MA (2000) Silica deposition in Demospongiae: spiculogenesis in Crambe crambe. Cell Tissue Res 301:299–309

    PubMed  CAS  Google Scholar 

  • Uriz MJ, Turon X, Beccero MA (2003a) Silica deposition in demosponges. Prog Mol Subcell Biol 33:163–193

    PubMed  CAS  Google Scholar 

  • Uriz MJ, Turon X, Becerro MA, Agell G (2003b) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Micr Res Techn 62:279–299

    CAS  Google Scholar 

  • Vogel S (1977) Current-induced flow through living sponges in nature. Proc Natl Acad Sci USA 74:2069–2071

    PubMed  CAS  Google Scholar 

  • Wang X, Wang Y (2006) An introduction to the study on natural characteristics of sponge spicules and bionic applications. Advances in Earth Science 21:37–42

    Google Scholar 

  • Weaver J, Morse DE (2003) Molecular biology of demosponge axial filaments and their roles in biosilification. Micr Res Techn 62:356–367

    CAS  Google Scholar 

  • Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Weissenfels N, Landschoff HW (1977) Bau und Funktion des Süßwasserschwammes Ephydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zool Jahrb Abt Anat 98:355–371

    Google Scholar 

  • Wiens M, Belikov SI, Krasko A, Kaluzhnaya OV, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242

    PubMed  Google Scholar 

  • Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218

    Google Scholar 

  • Willner I, Katz E, Willner B, Blonder R, Heleg-Shabtai V, Bückmann AF (1997) Assembly of functionalized monolayers of redox proteins on electrode surfaces: novel bioelectronic and optobioelectronic systems. Biosens Bioelectron 12:337–356

    CAS  Google Scholar 

  • Wink T, van Zuilen SJ, Bult A, van Bennekom WP (1997) Self-assembled monolayers for biosensors. Analyst 122:43–50

    Google Scholar 

  • Wöhler F (1828) Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie 12:253–256

    Google Scholar 

  • Yamamuro T, Hench LL, Wilson J (eds) (1990) Handbook on bioactive ceramics, vol I: bioactive glasses and glass-ceramics. CRC Press, Boca Raton, FL

    Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    CAS  Google Scholar 

  • Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxyl and imidazole functionalities. Angew Chem Int Ed 38:780–782

    CAS  Google Scholar 

  • Zhu J, Li TL, Pan B, Zhou L, Liu ZG (2003) Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition. J Phys D Appl Phys 36:389–393

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the European Commission, the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin), National Natural Science Foundation of China (No. 50402023) and the International Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz C. Schröder or Werner E. G. Müller.

Additional information

Werner E. G. Müller dedicated this study to Prof. Vera Gamulin (Rudjer Boskovic Institute, Zagreb, Croatia) in honour of her unique contributions in molecular evolution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, H.C., Brandt, D., Schloßmacher, U. et al. Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94, 339–359 (2007). https://doi.org/10.1007/s00114-006-0192-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0192-0

Keywords

Navigation