Skip to main content
Log in

Power matters in closing the phenotyping gap

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Much of our understanding of physiology and metabolism is derived from investigating mouse mutants and transgenic mice, and open-access platforms for standardized mouse phenotyping such as the German Mouse Clinic (GMC) are currently viewed as one powerful tool for identifying novel gene-function relationships. Phenotyping or phenotypic screening involves the comparison of wild-type control mice with their mutant or transgenic littermates. In our study, we explored the extent to which standardized phenotyping will succeed in detecting biologically relevant phenotypic differences in mice generated and provided by different collaborators. We analyzed quantitative metabolic data (body mass, energy intake, and energy metabolized) collected at the GMC under the current workflow, and used them for statistical power considerations. Our results demonstrate that there is substantial variability in these parameters among lines of wild-type C57BL/6 (B6) mice from different sources. Given this variable background noise in mice that serve as controls, subtle phenotypes in mutant or transgenic littermates may be overlooked. Furthermore, a phenotype observed in one cohort of a mutant line may not be reproducible (to the same extent) in mice coming from a different environment or supplier. In the light of these constraints, we encourage researchers to incorporate information on intrastrain variability into future study planning, or to perform advanced hierarchical analyses. Both will ultimately improve the detectability of novel phenotypes by phenotypic screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Peters J (1996) Combining mutagenesis and genomics in the mouse-closing the phenotype gap. Trends Genet 12:433–435

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Chambon P, Hrabe de Angelis M (2005) EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat Genet 37:1155

    Article  PubMed  CAS  Google Scholar 

  • Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 71:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (1969) Statistical power analysis for the behavioral sciences, 1st edn. Lawrence Erlbaum, Hillsdale (2nd edn 1988)

    Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Drozdz A, Weiner J (1975) Some bioenergetic parameters of wild ruminants. Pol Ecol Stud 1:85–101

    Google Scholar 

  • Gailus-Durner V, Fuchs H, Becker L, Bolle I, Brielmeier M, Calzada-Wack J, Elvert R, Ehrhardt N, Dalke C, Franz TJ, Grundner-Culemann E, Hammelbacher S, Holter SM, Holzlwimmer G, Horsch M, Javaheri A, Kalaydjiev SV, Klempt M, Kling E, Kunder S, Lengger C, Lisse T, Mijalski T, Naton B, Pedersen V, Prehn C, Przemeck G, Racz I, Reinhard C, Reitmeir P, Schneider I, Schrewe A, Steinkamp R, Zybill C, Adamski J, Beckers J, Behrendt H, Favor J, Graw J, Heldmaier G, Hofler H, Ivandic B, Katus H, Kirchhof P, Klingenspor M, Klopstock T, Lengeling A, Muller W, Ohl F, Ollert M, Quintanilla-Martinez L, Schmidt J, Schulz H, Wolf E, Wurst W, Zimmer A, Busch DH, Hrabe de Angelis M (2005) Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404

    Article  PubMed  CAS  Google Scholar 

  • Hintz JL (2000) PASS 2000 user’s guide. NCSS Statistical Software, Kaysville

  • Howard BR (2002) Control of variability. ILAR J 43:194–201

    PubMed  CAS  Google Scholar 

  • Hrabé de Angelis M, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  PubMed  Google Scholar 

  • Julious SA (2004) Sample sizes for clinical trials with normal data. Stat Med 23:1921–1986

    Article  PubMed  Google Scholar 

  • Shih WJ, Ohman-Strickland PA, Lin Y (2004) Analysis of pilot and early phase studies with small sample sizes. Stat Med 23:1827–1842

    Article  PubMed  Google Scholar 

  • Silver LM (1995) Mouse genetics. concepts and applications, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    Article  PubMed  CAS  Google Scholar 

  • Verbeke G, Molenberghs G (2001) Linear mixed models for longitudinal data. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Scarpace PJ (2006) The role of leptin in leptin resistance and obesity. Physiol Behav 88:249–256

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NGFN2 grants #01GS0483 (Obesity and related disorders), #01GR0437 (SMP Tiermodelle), and #01GR0460 (SMP GEM). All animal experiments were approved by the German animal welfare authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola W. Meyer.

Additional information

Carola W. Meyer and Ralf Elvert contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C.W., Elvert, R., Scherag, A. et al. Power matters in closing the phenotyping gap. Naturwissenschaften 94, 401–406 (2007). https://doi.org/10.1007/s00114-006-0203-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0203-1

Keywords

Navigation