Skip to main content
Log in

Radiologische Diagnose des femoroazetabulären Impingements

Radiological diagnosis of femoroacetabular impingement

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Beim femoroazetabulären Impingement (FAI) bewirkt ein anatomisches Missverhältnis zwischen proximalem Femur und Azetabulum eine frühzeitige Abnützung der Gelenkflächen. Um Symptome wie eingeschränkte Beweglichkeit und Schmerzen zu beheben, aber auch um dem degenerativen Prozess vorzubeugen oder ihn zu verlangsamen, ist häufig eine Operation notwendig. Dabei hängt das Resultat vom präoperativen Gelenkstatus ab – mit schlechten Ergebnissen bei bereits fortgeschrittener Hüftgelenkarthrose. Dies erklärt die Notwendigkeit einer akkuraten Diagnostik, um Frühstadien der Gelenkschädigung erkennen zu können. Die Diagnostik des FAI beinhaltet klinische Untersuchung, Röntgendiagnostik und Magnetresonanztomographie (MRT). Die Standardröntgen-radiologische Untersuchung beim FAI wird anhand von 2 Röntgenaufnahmen durchgeführt, der a.p.-Beckenaufnahme sowie einer seitlichen Aufnahme des proximalen Femurs wie z. B. der“lateralen cross-table”- oder der Lauenstein-Aufnahme. Hierbei müssen Positionskriterien eingehalten werden, um Verzerrungsartefakte auszuschließen. Die MRT-Bildgebung ermöglicht eine Untersuchung der Hüfte in 3 Ebenen und sollte zudem radial geplante Sequenzen für eine verbesserte Darstellung der randnahen Strukturen wie Labrum und peripherem Knorpel beinhalten. Die Verwendung von Kontrastmittel für ein direktes MR-Arthrogramm (MRA) hat sich insbesondere für die Darstellung von Labrumschäden als vorteilhaft erwiesen. Die Datenlage in Hinblick auf die Knorpelbildgebung ist noch unklar. Weiterentwicklungen der Techniken werden in naher Zukunft die Diagnostik der Hüfte verbessern können. Hierzu zählen u. a. biochemisch sensitive MRT-Anwendungen.

Abstract

Femoroacetabular impingements (FAI) are due to an anatomical disproportion between the proximal femur and the acetabulum which causes premature wear of the joint surfaces. An operation is often necessary in order to relieve symptoms such as limited movement and pain as well as to prevent or slow down the degenerative process. The result is dependent on the preoperative status of the joint with poor results for advanced arthritis of the hip joint. This explains the necessity for an accurate diagnosis in order to recognize early stages of damage to the joint. The diagnosis of FAI includes clinical examination, X-ray examination and magnetic resonance imaging (MRI). The standard X-radiological examination for FAI is carried out using two X-ray images, an anterior-posterior view of the pelvis and a lateral view of the proximal femur, such as the cross-table lateral or Lauenstein projections. It is necessary that positioning criteria are adhered to in order to avoid distortion artifacts. MRI permits an examination of the pelvis on three levels and should also include radial planned sequences for improved representation of peripheral structures, such as the labrum and peripheral cartilage. The use of contrast medium for a direct MR arthrogram has proved to be advantageous particularly for representation of labrum damage. The data with respect to cartilage imaging are still unclear. Further developments in technology, such as biochemical-sensitive MRI applications, will be able to improve the diagnosis of the pelvis in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Murphy SB, Ganz R, Muller ME (1995) The prognosis in untreated dysplasia of the hip. A study of radiographic factors that predict the outcome. J Bone Joint Surg [Am] 77:985–989

    Google Scholar 

  2. Klaue K, Durnin CW, Ganz R (1991) The acetabular rim syndrome. A clinical presentation of dysplasia of the hip. J Bone Joint Surg [Br] 73:423–429

    Google Scholar 

  3. Harris WH (1986) Etiology of osteoarthritis of the hip. Clin Orthop Relat Res 213:20–33

    PubMed  Google Scholar 

  4. Ganz R, Parvizi J, Beck M et al (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120

    PubMed  Google Scholar 

  5. Ganz R, Bamert P, Hausner P et al (1991) Cervico-acetabular impingement after femoral neck fracture. Unfallchirurg 94:172–175

    PubMed  CAS  Google Scholar 

  6. Stulberg S, Cordell L, Harris W et al (1975) Unrecognized childhood hip disease: a major cause of idiopathic osteoarthitis of the hip. Proceedings of the Third Open Scientific Meeting of the Hip, pp 212–228

  7. Imhauser G (1956) Pathogenesis and therapy of hip dislocation in youth. Z Orthop Ihre Grenzgeb 88:3–41

    PubMed  CAS  Google Scholar 

  8. Resnick D (1976) The ‚tilt deformity‘ of the femoral head in osteoarthritis of the hip: a poor indicator of previous epiphysiolysis. Clin Radiol 27:355–363

    Article  PubMed  CAS  Google Scholar 

  9. Myers SR, Eijer H, Ganz R (1999) Anterior femoroacetabular impingement after periacetabular osteotomy. Clin Orthop Relat Res 363:93–99

    Article  PubMed  Google Scholar 

  10. Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg [Br] 87:1012–1018

    Google Scholar 

  11. Ito K, Minka MA 2nd, Leunig M et al (2001) Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg [Br] 83:171–176

    Google Scholar 

  12. Leunig M, Ganz R (2005) Femoroacetabular impingement. A common cause of hip complaints leading to arthrosis. Unfallchirurg 108:9–10, 12–17

    Article  PubMed  CAS  Google Scholar 

  13. Notzli HP, Wyss TF, Stoecklin CH et al (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg [Br] 84:556–560

    Google Scholar 

  14. Reynolds D, Lucas J, Klaue K (1999) Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg [Br] 81:281–288

    Google Scholar 

  15. Siebenrock KA, Schoeniger R, Ganz R (2003) Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg [Am] 85-A:278–286

    Google Scholar 

  16. Wagner S, Hofstetter W, Chiquet M et al (2003) Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement. Osteoarthritis Cartil 11:508–518

    Article  CAS  Google Scholar 

  17. Siebenrock KA, Wahab KH, Werlen S et al (2004) Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res 54–60

  18. Eijer H, Myers SR, Ganz R (2001) Anterior femoroacetabular impingement after femoral neck fractures. J Orthop Trauma 15:475–481

    Article  PubMed  CAS  Google Scholar 

  19. Goodman DA, Feighan JE, Smith AD et al (1997) Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg [Am] 79:1489–1497

    Google Scholar 

  20. Leunig M, Casillas MM, Hamlet M et al (2000) Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. Acta Orthop Scand 71:370–375

    Article  PubMed  CAS  Google Scholar 

  21. Murphy S, Tannast M, Kim YJ et al (2004) Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results. Clin Orthop Relat Res 429:178–181

    Article  PubMed  Google Scholar 

  22. Snow SW, Keret D, Scarangella S, Bowen JR (1993) Anterior impingement of the femoral head: a late phenomenon of Legg-Calve-Perthes‘ disease. J Pediatr Orthop 13:286–289

    PubMed  CAS  Google Scholar 

  23. Giori NJ, Trousdale RT (2003) Acetabular retroversion is associated with osteoarthritis of the hip. Clin Orthop Relat Res 417:263–269

    PubMed  Google Scholar 

  24. Tannast M, Siebenrock KA, Anderson SE (2007) Femoroacetabular impingement: radiographic diagnosis – what the radiologist should know. AJR Am J Roentgenol 188:1540–1552

    Article  PubMed  Google Scholar 

  25. Dora C, Mascard E, Mladenov K, Seringe R (2002) Retroversion of the acetabular dome after Salter and triple pelvic osteotomy for congenital dislocation of the hip. J Pediatr Orthop B 11:34–40

    Article  PubMed  Google Scholar 

  26. Schmid MR, Notzli HP, Zanetti M et al (2003) Cartilage lesions in the hip: diagnostic effectiveness of MR arthrography. Radiology 226:382–386

    Article  PubMed  Google Scholar 

  27. Leunig M, Ganz R (1998) The Bernese method of periacetabular osteotomy. Orthopäde 27:743–750

    PubMed  CAS  Google Scholar 

  28. Beck M, Leunig M, Parvizi J et al (2004) Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment. Clin Orthop Relat Res 418:67–73

    Article  PubMed  Google Scholar 

  29. Tonnis D, Heinecke A (1999) Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg [Am] 81:1747–1770

    Google Scholar 

  30. Tanzer M, Noiseux N (2004) Osseous abnormalities and early osteoarthritis: the role of hip impingement. Clin Orthop Relat Res 429:170–177

    Article  PubMed  Google Scholar 

  31. Ganz R, Gill TJ, Gautier E et al (2001) Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg [Br] 83:1119–1124

    Google Scholar 

  32. Lavigne M, Parvizi J, Beck M et al (2004) Anterior femoroacetabular impingement: part I. Techniques of joint preserving surgery. Clin Orthop Relat Res 418:61–66

    Article  PubMed  Google Scholar 

  33. Wettstein M, Dienst M (2006) Hip arthroscopy for femoroacetabular impingement. Orthopäde 35:85–93

    Article  PubMed  CAS  Google Scholar 

  34. Spencer S, Millis MB, Kim YJ (2006) Early results of treatment of hip impingement syndrome in slipped capital femoral epiphysis and pistol grip deformity of the femoral head-neck junction using the surgical dislocation technique. J Pediatr Orthop 26:281–285

    PubMed  Google Scholar 

  35. Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res 407:241–248

    Article  PubMed  Google Scholar 

  36. Watanabe W, Sato K, Itoi E (2002) Yang K, Watanabe H. Posterior pelvic tilt in patients with decreased lumbar lordosis decreases acetabular femoral head covering. Orthopedics 25:321–324

    PubMed  Google Scholar 

  37. Zilber S, Lazennec JY, Gorin M, Saillant G (2004) Variations of caudal, central and cranial acetabular anteversion according to the tilt of the pelvis. Surg Radiol Anat 26:462–465

    Article  PubMed  CAS  Google Scholar 

  38. Eijer H, Leunig M, Mahomed M, Ganz R (2001) Cross-table lateral radiograph for screening of anterior femoral head-neck offset in patients with femoro-acetabular impingement. Hip Int 11:37–41

    Google Scholar 

  39. Wiberg G (1939) Studies on dysplastic acetabulum and congenital subluxation of the hip joint with special reference to the complication of osteoarthritis. Acta Chir Scand 83 [suppl]:58

  40. Heyman CH, Herndon CH (1950) Legg-Perthes disease; a method for the measurement of the roentgenographic result. J Bone Joint Surg [Am] 32:767–778

    Google Scholar 

  41. Li PL, Ganz R (2003) Morphologic features of congenital acetabular dysplasia: one in six is retroverted. Clin Orthop Relat Res 416:245–253

    Article  PubMed  Google Scholar 

  42. Mast JW, Brunner RL, Zebrack J (2004) Recognizing acetabular version in the radiographic presentation of hip dysplasia. Clin Orthop Relat Res 418:48–53

    Article  PubMed  Google Scholar 

  43. Lequesne MG, Laredo JD (1998) The faux profil (oblique view) of the hip in the standing position. Contribution to the evaluation of osteoarthritis of the adult hip. Ann Rheum Dis 57:676–681

    Article  PubMed  CAS  Google Scholar 

  44. Leunig M, Beck M, Kalhor M et al (2005) Fibrocystic changes at anterosuperior femoral neck: prevalence in hips with femoroacetabular impingement. Radiology 236:237–246

    Article  PubMed  Google Scholar 

  45. Pitt MJ, Graham AR, Shipman JH, Birkby W (1982) Herniation pit of the femoral neck. AJR Am J Roentgenol 138:1115–1121

    PubMed  CAS  Google Scholar 

  46. Tönnis D (1987) Congenital dysplasia and dislocation of the hip in children and adults. Springer, Berlin Heidelberg New York, pp 113–130, 167, 370–380

  47. Dudda M, Albers C, Mamisch TC et al (2008) Do normal radiographs exclude asphericity of the femoral head-neck junction? Clin Orthop Relat Res 467:651–659

    Article  PubMed  Google Scholar 

  48. Mamisch TC, Bittersohl B, Hughes T et al (2008) Magnetic resonance imaging of the hip at 3 tesla: clinical value in femoroacetabular impingement of the hip and current concepts. Semin Musculoskelet Radiol 12:212–222

    Article  PubMed  Google Scholar 

  49. Pfirrmann CW, Mengiardi B, Dora C et al (2006) Cam and pincer femoroacetabular impingement: characteristic MR arthrographic findings in 50 patients. Radiology 240:778–785

    Article  PubMed  Google Scholar 

  50. Wyler A, Bousson V, Bergot C et al (2009) Comparison of MR arthrography and CT arthrography in hyaline cartilage-thickness measurement in radiographically normal cadaver hips with anatomy as gold standard. Osteoarthritis Cartil 17:19–25

    Article  CAS  Google Scholar 

  51. Kubo T, Horii M, Harada Y et al (1999) Radial-sequence magnetic resonance imaging in evaluation of acetabular labrum. J Orthop Sci 4:328–332

    Article  PubMed  CAS  Google Scholar 

  52. Leunig M, Werlen S, Ungersbock A et al (1997) Evaluation of the acetabular labrum by MR arthrography. J Bone Joint Surg [Br] 79:230–234

    Google Scholar 

  53. Locher S, Werlen S, Leunig M, Ganz R (2002) MR arthrography with radial sequences for visualization of early hip pathology not visible on plain radiographs. Z Orthop Ihre Grenzgeb 140:52–57

    Article  PubMed  CAS  Google Scholar 

  54. Czerny C, Hofmann S, Neuhold A et al (1996) Lesions of the acetabular labrum: accuracy of MR imaging and MR arthrography in detection and staging. Radiology 200:225–230

    PubMed  CAS  Google Scholar 

  55. Keeney JA, Peelle MW, Jackson J et al (2004) Magnetic resonance arthrography versus arthroscopy in the evaluation of articular hip pathology. Clin Orthop Relat Res 429:163–169

    Article  PubMed  Google Scholar 

  56. Petersilge CA (2001) MR arthrography for evaluation of the acetabular labrum. Skeletal Radiol 30:423–430

    Article  PubMed  CAS  Google Scholar 

  57. Petersilge CA, Haque MA, Petersilge WJ et al (1996) Acetabular labral tears: evaluation with MR arthrography. Radiology 200:231–235

    PubMed  CAS  Google Scholar 

  58. James S, Miocevic M, Malara F et al (2006) MR imaging findings of acetabular dysplasia in adults. Skeletal Radiol 35:378–384

    Article  PubMed  Google Scholar 

  59. Nishii T, Tanaka H, Nakanishi K et al (2005) Fat-suppressed 3D spoiled gradient-echo MRI and MDCT arthrography of articular cartilage in patients with hip dysplasia. AJR Am J Roentgenol 185:379–385

    PubMed  Google Scholar 

  60. Knuesel PR, Pfirrmann CW, Noetzli HP et al (2004) MR arthrography of the hip: diagnostic performance of a dedicated water-excitation 3D double-echo steady-state sequence to detect cartilage lesions. AJR Am J Roentgenol 183:1729–1735

    PubMed  Google Scholar 

  61. Sundberg TP, Toomayan GA, Major NM (2006) Evaluation of the acetabular labrum at 3.0-T MR imaging compared with 1.5-T MR arthrography: preliminary experience. Radiology 238:706–711

    Article  PubMed  Google Scholar 

  62. Miller KL, Hargreaves BA, Gold GE, Pauly JM (2004) Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 51:394–398

    Article  PubMed  Google Scholar 

  63. Regatte RR, Akella SV, Lonner JH et al (2006) T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 23:547–553

    Article  PubMed  Google Scholar 

  64. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41

    Article  PubMed  CAS  Google Scholar 

  65. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  66. Welsch GH, Mamisch TC, Hughes T et al (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2 and T2* mapping of articular cartilage. Invest Radiol 43:619–626

    Article  PubMed  Google Scholar 

  67. Cunningham T, Jessel R, Zurakowski D et al (2006) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg [Am] 88:1540–1548

    Google Scholar 

  68. Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg [Am] 85-A:1987–1992

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.C. Mamisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamisch, T., Werlen, S., Zilkens, C. et al. Radiologische Diagnose des femoroazetabulären Impingements. Radiologe 49, 425–433 (2009). https://doi.org/10.1007/s00117-009-1833-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1833-z

Schlüsselwörter

Keywords

Navigation