Skip to main content
Log in

Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The hypersensitive response (HR) is one of the most-efficient forms of plant defense against biotrophic pathogens, and results in localized cell death and the formation of necrotic lesions; however, the molecular components of pathways leading to HR remain largely unknown. Barley (Hordeum vulgare ssp. vulgare L.) cDNAs for putative hypersensitive-induced reaction (HIR) genes were isolated based on DNA and amino-acid homologies to maize HIR genes. Analyses of the cDNA and genomic sequences and genetic mapping found four distinct barley HIR genes, Hv-hir1, Hv-hir2, Hv-hir3 and Hv-hir4, on chromosomes 4(4H) bin10, 7(5H) bin04, 7(5H) bin07 and 1(7H) bin03, respectively. Hv-hir1, Hv-hir2 and Hv-hir3 genes were highly homologous at both DNA and the deduced amino-acid level, but the Hv-hir4 gene was similar to the other genes only at the amino-acid sequence level. Amino-acid sequence analyses of the barley HIR proteins indicated the presence of the SPFH protein-domain characteristic for the prohibitins and stomatins which are involved in control of the cell cycle and ion channels, as well as in other membrane-associated proteins from bacteria, plants and animals. HIR genes were expressed in all organs and developement stages analyzed, indicating a vital and non-redundant function. Barley fast-neutron mutants exhibiting spontaneous HR (disease lesion mimic mutants) showed up to a 35-fold increase in Hv-hir3 expression, implicating HIR genes in the induction of HR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Ahn S, Anderson JA, Sorrels ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92:215–221

    CAS  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signalling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel-ion channel family. Plant Cell 15:365–379

    Article  CAS  PubMed  Google Scholar 

  • Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF (1997) Flotillin and the epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272:13,793–13,802

    Article  PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline-extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    CAS  PubMed  Google Scholar 

  • Clough SJ, Fengler KA, Yu I-C, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Google Scholar 

  • Heath MC (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    CAS  PubMed  Google Scholar 

  • Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105

    CAS  PubMed  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  CAS  PubMed  Google Scholar 

  • Johal GS, Hulbert S, Briggs SP (1995) Disease lesion mimic mutations of maize: a model for cell death in plants. Bioessays 17:685–692

    Google Scholar 

  • Karrer EE, Beachy RN, Holt CA (1998) Cloning of tobacco genes that elicit the hypersensitive response. Plant Mol Biol 36:681–690

    Article  CAS  PubMed  Google Scholar 

  • Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 187–199

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Google Scholar 

  • Lundqvist U, Franckowiak J, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newslett 26:22, http://wheat.pw.usda.gov/ggpages/bgn/

  • McClung JK, Jupe ER, Liu XT, Dell'Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30:99–124

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, Clauss MJ (2002) Plant evolutionary genomics. Curr Opin Plant Biol 5:74–79

    Article  CAS  PubMed  Google Scholar 

  • Nadimpalli R, Yalpani N, Johal GS, Simmons CR (2000) Prohibitins, stomatins, and plant-disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death. J Biol Chem 275:29,579–29,586

    CAS  PubMed  Google Scholar 

  • Noble JA, Innis MA, Koonin EV, Rudd KE, Banuett F, Herskowitz I (1993) The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain. Proc Natl Acad Sci USA 90:10,866–10,870

    Google Scholar 

  • Schuler MA (1998) Plant pre-mRNA splicing. In: Bailey-Serres J, Gallie DR (eds) A look beyond transcription. Am Soc Plant Physiologists, Rockville, Maryland, USA, pp 1–19

  • Stewart GW (1997) Stomatin. Int J Biochem Cell Biol 29:271–274

    Article  CAS  PubMed  Google Scholar 

  • Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425–427

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrels ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    PubMed  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is Scientific Paper No. 090201 from the College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA; Project 0196. Research was supported by USDA/NRI grant No. 9901325 to A.K. Technical assistance by Kara Johnson and Thomas Drader is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kleinhofs.

Additional information

Communicated by G. Wenzel

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostoks, N., Schmierer, D., Kudrna, D. et al. Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theor Appl Genet 107, 1094–1101 (2003). https://doi.org/10.1007/s00122-003-1351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1351-8

Keywords

Navigation