Skip to main content
Log in

Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genetic integrity of six accessions represented by 14 sub-populations of the open-pollinating species rye (Secale cereale L.) was investigated. Seeds available from a herbarium collection (first regeneration) and from the cold store (most recent regeneration) were multiplied two to fourteen times and fingerprinted using microsatellite markers. Four accessions had significantly different allele frequencies. These were multiplied seven to thirteen times. Nearly 50% of the alleles discovered in the original samples were not found in the material present in the cold store. However alleles were detected in the most recently propagated sub-populations, that were not observed in the investigated plants of the original one. The change in allele frequencies is a continuous process. Reasons for the occurrence of genetic changes and consequences for managing open pollinating species maintained in ex situ genebanks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Adam D, Simonsen V, Loeschcke V (1987) Allozyme variation in rye, Secale cereale L. 2. Commercial varieties. Theor Appl Genet 74:560–565

    CAS  Google Scholar 

  • Ben Amer IM, Börner A, Röder MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Genet Res Crop Evol 48:579–585

    Article  Google Scholar 

  • Börner A, Chebotar S, Korzun V (2000a) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497

    Article  Google Scholar 

  • Börner A, Röder MS, Unger O, Meinel A (2000b) The detection and molecular mapping of a major gene for non specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099

    Article  Google Scholar 

  • Bredemejer GMM, Arens P, Wouters D, Visser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590

    Article  CAS  Google Scholar 

  • Carnide V, Pinto-Carnide O, Matos M, Guedes-Pinto H, Benito C (1997) Morphological and yield components and isozyme characterization of Portuguese rye populations. J Appl Genet 38B:299–304

    Google Scholar 

  • Davierwala AP, Chowdari KV, Kumar S, Reddy APK, Ranjekar VS, Gupta VS (2000) Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties. Genetica 108:269–284

    Article  CAS  PubMed  Google Scholar 

  • Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Res Crop Evol 45:415–421

    Article  Google Scholar 

  • Everitt BS (1977) The analysis of contingency tables. Chapman and Hall, London

  • Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195

    Article  CAS  Google Scholar 

  • FAO (1998) The state of the world's plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Röder MS, Börner A (2001) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.) Theor Appl Genet 104:632–637

    Google Scholar 

  • Korzun V, Röder M, Worland AJ, Börner A (1997a) Mapping of the dwarfing (Rht12) and vernalisation response (Vrn1) genes in wheat by using RFLP and microsatellite markers. Plant Breed 116:227–232

    Google Scholar 

  • Korzun V, Börner A, Worland AJ, Law CN, Röder MS (1997b) Application of microsatellite markers to distinguish inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Euphytica 95:149–155

    CAS  Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of the Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    CAS  Google Scholar 

  • Madej LJ (1996) Worldwide trends in rye growing and breeding. Vortr Pflanzenzuecht 35:1–6

    Google Scholar 

  • Matos M, Pinto-Carnide O, Benito C (2001) Phylogenetic relationships among Portuguese rye based on isozyme, RAPD and ISSR markers. Hereditas 134:229–236

    CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    CAS  PubMed  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplic V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maiz inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Perez de la Vega M, Allard RWV (1984) Mating system and genetic polymorphism in populations of Secale cereale and S. vavilovii. Can J Genet Cytol 26:308–317

    Google Scholar 

  • Persson K, Diaz O, Von Bothmer R (2001) Extent and patterns of RAPD variation and landraces and cultivars of rye (Secale cereale L.) from Northern Europe. Hereditas 134:237–243

    CAS  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Pestsova E, Salina E, Börner A, Korzun V, Maystrenko OI, Röder MS (2001) Microsatellites support the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Theor Appl Genet 101:95–99

    Article  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    CAS  Google Scholar 

  • Prasad M, Varshney RK, Kumar A, Balayan HS, Sharma Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta VS (1999) A microsatellite marker associated with a QTL grain protein content on chromosome arm 2 DL of bread wheat. Theor Appl Genet 100:584–592

    Article  Google Scholar 

  • Ramirez L, Pisabarro G, Perez de la Vega M (1985) Izozyme genetic similarity among rye. (Secale cereale L.) cultivars. J Agric Sci 105:495–500

    CAS  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance. variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Russell J, Fuller J, Young G, Thomas B, Taramino G, Macauley M, Waugh R, Powell W (1997) Discriminating between barley genotypes using microsatellite markers. Genome 40:442–450

    CAS  PubMed  Google Scholar 

  • Salina E, Korzun V, Pestsova E, Röder MS, Börner A (2002) The study of the authenticity of three sets of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). In: Börner A, Snape JW, Law CN (eds) Proc 12th Int EWAC Workshop. IPK, Gatersleben John Innes Centre, Norwich, pp 28–31

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rolf FJ (1981) Biometry, 2nd edn. W.H. Freeman, San Francisco

  • Specht C-E, Börner A (1998) Results of a long term storage test with rye (Secale cereale L.) at different storage temperatures and media. Genet Res Crop Evol 45:483–488

    Article  Google Scholar 

  • Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39:277–287

    CAS  PubMed  Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Kumar N, Harjit-Singh Dhaliwal HS, Gupta PK (2000) Identifcation of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    CAS  Google Scholar 

  • Yang W, de Oliveira AC, Goodwin I, Schertz K, Bennetzen JL (1996) Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Anatoly Voylokov for doing the isozyme studies and his fruitful comments, Dr. A. Potokina for discussing the genetic distances calculations by using ntsys-pc, Michael Grau for providing the field management data and Marina Schäfer for supplying the seed samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chebotar, S., Röder, M.S., Korzun, V. et al. Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107, 1469–1476 (2003). https://doi.org/10.1007/s00122-003-1366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1366-1

Keywords

Navigation