Skip to main content
Log in

A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A genetic linkage map has been constructed for meadow fescue (Festuca pratensis Huds.) (2n=2x=14) using a full-sib family of a cross between a genotype from a Norwegian population (HF2) and a genotype from a Yugoslavian cultivar (B14). The two-way pseudo-testcross procedure has been used to develop separate maps for each parent, as well as a combined map. A total number of 550 loci have been mapped using homologous and heterologous RFLPs, AFLPs, isozymes and SSRs. The combined map consists of 466 markers, has a total length of 658.8 cM with an average marker density of 1.4 cM/marker. A high degree of orthology and colinearity was observed between meadow fescue and the Triticeae genome(s) for all linkage groups, and the individual linkage groups were designated 1F–7F in accordance with the orthologous Triticeae chromosomes. As expected, the meadow fescue linkage groups were highly orthologous and co-linear with Lolium, and with oat, maize and sorghum, generally in the same manner as the Triticeae chromosomes. It was shown that the evolutionary 4AL/5AL translocation, which characterises some of the Triticeae species, is not present in the meadow fescue genome. A putative insertion of a segment orthologous to Triticeae 2 at the top of 6F, similar to the rearrangement found in the wheat B and the rye R genome, was also observed. In addition, chromosome 4F is completely orthologous to rice chromosome 3 in contrast to the Triticeae where this rice chromosome is distributed over homoeologous group 4 and 5 chromosomes. The meadow fescue genome thus has a more ancestral configuration than any of the Triticeae genomes. The extended meadow fescue map reported here provides the opportunity for beneficial cross-species transfer of genetic knowledge, particularly from the complete genome sequence of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    CAS  PubMed  Google Scholar 

  • Allendorf FW, Mitchell N, Ryman N, Stahl G (1977) Isozyme loci in brown trout (Salmo trutta L.). Detection and interpretation from population data. Hereditas 86:179–190

    CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Freeling M (1993) Grasses as a single genetic system—genome composition, colinearity and compatibility. Trends Genet 9:259–261

    CAS  PubMed  Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  Google Scholar 

  • Boivin K, Deu M, Rami J-F, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    CAS  Google Scholar 

  • Causse M, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SB, Second GA, McCouch SR, Tanksley SD (1994) Saturated molecular map of rice genome based on inter-specific backcross population. Genetics 138:1251–1274

    CAS  PubMed  Google Scholar 

  • Chen C, Sleper DA, Johal GS (1998) Comparative RFLP mapping of meadow and tall fescue. Theor Appl Genet 97:255–260

    Article  CAS  Google Scholar 

  • Choi D-W, Koag MC, Close TJ (2000) Map locations of barley Dhn genes determined by gene-specific PCR. Theor Appl Genet 101:350–354

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the caboxyl-terminal peptide. Plant Mol Biol 3:279–286

    Google Scholar 

  • Davis GJ, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe Jr EH (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequenced tags (ESTs) in a 1,736-locus map. Genetics 152:1137–1172

    CAS  PubMed  Google Scholar 

  • DeSimone M, Morgante M, Lucchin M, Parrini P, Marocco A (1997) A first linkage map of Cichorium intybus L. using a one-way pseudo-testcross and PCR-derived markers. Mol Breed 3:415–425

    Article  CAS  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3-15

    CAS  PubMed  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu C, Gale MD (1992) RFLP based genetic maps of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    CAS  Google Scholar 

  • Devos KM, Millian T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorák J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A and 7B, and its impact on recombination. Theor Appl Genet 91:282–288

    CAS  Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1994) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71

    CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    CAS  PubMed  Google Scholar 

  • Gale MD, Moore G, Devos KM (2001) Rice—the pivotal genome in cereal comparative genetics. In: Goode JA, Chadwick D (eds) Rice biotechnology: improving yield, stress tolerance and grain quality. John Wiley and Sons Ltd, Chichester, pp 46–58

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of vernalization (Vrn1) and frost resistance (Fr1) on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. Tansley review no. 132. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Shachtschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Gana MW, Tanksley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homologous tomato genome. Theor Appl Genet 83:49–57

    Google Scholar 

  • Glaszmann JC, Dufour P, Grivet L, D'Hont A, Deu M, Paulet F, Hamon P (1997) Comparative genome analysis between several tropical grasses. Euphytica 96:13–21

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto Y, Nagamura Y, Kurata N, Khush G, Sasaki T (1998) A high-density rice genetic linkage map with 2,275 markers using a single F2 population. Genetics 91:618–494

    Google Scholar 

  • Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, McAdam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, Evans GM (1998) Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117:451–455

    Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) A molecular marker linkage map for apple. J Hered 85:4-11

    CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Faris JD, Su X, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 48:805–820

    Article  CAS  PubMed  Google Scholar 

  • Jensen LB, Muylle H, Roldán-Ruiz I, De Riek J, Vosman B, Arens P, Taylor C, Lübberstedt T, Barre P (2003) A mapped SSR reference set in Lolium perenne (in preparation)

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002a) An enhanced molecular marker-based genetic map of perennial ryegrass (Lolium perenne L.) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    CAS  PubMed  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002b) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  Google Scholar 

  • Kaló P, Endre G, Zimáneyi L, Csanádi G, Kiss GBC (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657

    Article  Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    CAS  PubMed  Google Scholar 

  • Kennard W, Phillips R, Porter R, Grombacher A (1999) A comparative map of wild rice (Zizania palustris L. 2n=2x=30). Theor Appl Genet 99:793–799

    Article  CAS  Google Scholar 

  • Kiss GB, Csanadi G, Kalman K, Kaló P, Okresz L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:120–137

    PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kurata N, Nagambura Y, Yamamoto Y, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyayo K, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300-kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet 8:365–372

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Larsen A (1979) Freezing tolerance in grasses: variation within population and response to selection. Meld Norg Landbruk Høgsk 58:1–28

  • Liu CJ, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Non-homoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor Appl Genet 83:305–312

    Google Scholar 

  • Lundqvist A (1962) The nature of the two-loci incompatibility system in grasses. II. Number of alleles at the incompatibility loci in Festuca pratensis Huds. Hereditas 48:169–181

    Google Scholar 

  • Maliepaard C, Jansen J, van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for application. Genet Res 70:237–250

    Article  Google Scholar 

  • McGuire PE, Qualset CO (eds) (1997) Progress in genome mapping of wheat and related species: joint proceedings of the 5th and 6thpublic workshops of the International Triticeae Mapping Initiative, 1–3 September 1995, Norwich UK, and 30–31 August 1996, Sidney, Australia. Report No.18. University of California Genetic Resources Conservation Program, Davies California, USA

    Google Scholar 

  • Moore G (1995) Cereal genome evolution: pastoral pursuits with 'lego' genomes. Curr Opin Genet Dev 5:717–724

    CAS  PubMed  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution—grasses, line up and form a circle. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernhard M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson MD, Bernhard M, Leroy P, Faris JD, Anderson JA (1995c) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141:721–731

    CAS  PubMed  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedö Z (1994) Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910

    CAS  Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654

    CAS  PubMed  Google Scholar 

  • Rognli OA, Nilsson N-O, Nurminiemi M (2000) Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J, Laurie DA, Snape JW (1998) Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97:103–109

    CAS  Google Scholar 

  • Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous group-5 chromosomes of wheat in terms of linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    Article  CAS  PubMed  Google Scholar 

  • Seal AG (1983) DNA variation in Festuca. Heredity 50:225–236

    CAS  Google Scholar 

  • Sharp PJ, Kresi M, Shewry PR, MD Gale (1988) Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet 75:286–290

    CAS  Google Scholar 

  • Simonsen Ø (1975) Cytogenetic investigations in diploid and autotetraploid populations of Festuca pratensis Huds. Hereditas 79:73–108

    CAS  PubMed  Google Scholar 

  • Soreng RJ, Davis JI (1998) Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction-site character sets. Bot Rev 64:1-85

    Google Scholar 

  • Stam P, van Ooijen JW (1995) Joinmap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, The Netherlands

  • Tavoletti S, Veronesi F, Osborn TC (1996) RFLP linkage map of an alfalfa meiotic mutant based on an F1 population. J Hered 87:167–170

    CAS  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen J, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    CAS  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, O'Donoughue LS, Ahn SN, Siripoonwiwat W, Harrington ESY, Braga DP, McCouch SR, Sorrells ME (1995a) Comparative mapping in grasses. Oat relationships. Mol Gen Genet 249:349–356

    PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Harrington SN, Yglesias ES, Braga D, McCouch SR, Sorrells ME (1995b) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    PubMed  Google Scholar 

  • Ventelon M, Deu M, Garsmeur O, Doligez A, Ghesquiére A, Lorieux M, Rami JF, Glaszmann JC, Grivet L (2001) A direct comparison between the genetic maps of sorghum and rice. Theor Appl Genet 102:379–386

    Article  CAS  Google Scholar 

  • Voorrips RE (2001) MapChart version 2.0: windows software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen, The Netherlands

  • Vos P, Hogers R, Blecker M, Rijans M, van der Lee T, Hornes M, Frijters A, Pot J, Poleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Wendel JF, Weeden FF (1989) Visualisation and interpretation of plant isozymes. In: Solitis DE, Soltis PS (eds) Isozymes in plant biology. Chapman and Hall, London, UK, pp 1–45

  • Wilson WA, Harrington SE, Woodman WL, Lee M, Sorrells ME, McCouch SR (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated Panicoids. Genetics 153:453–473

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    CAS  PubMed  Google Scholar 

  • Xie DX, Devos KM, Moore G, Gale MD (1993) RFLP-based genetic maps of the homoeologous group-5 chromosomes of bread wheat (Triticum aestivum L.). Theor Appl Genet 87:70–74

    CAS  Google Scholar 

  • Xu WW, Sleper DA, Hoisington DA (1991) A survey of restriction fragment length polymorphisms in tall fescue and its relatives. Genome 34:686–692

    CAS  Google Scholar 

  • Xu WW, Sleper DA, Chao S (1995) Genome mapping of polyploid tall fescue (Festuca arundinaceae Schreb.) with RFLP markers. Theor Appl Genet 91:947–955

    CAS  Google Scholar 

  • Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application number: 92402629.7, Publication number 0 534 858 A1

    Google Scholar 

Download references

Acknowledgments

The seed of B14, accession no. 1700, was kindly provided by Dr. Valeria Negri, University of Perugia, Italy. Dr. P. Stephenson, Comparative Genetics Unit, John Innes Centre, UK, and Dr. J.C. Glaszmann, CIRAD, Montpellier, France, developed the EGRAM anchor probe sets, and provided the following probes: PSR (wheat cDNA PSR50-200, wheat gDNA PSR300-1300), RZ (rice cDNA), RGC (rice cDNA), RGG (rice gDNA), CSU (maize cDNA), SbRPG (sorghum cDNA) and PSM (pearl millet gDNA). The BCD (barley cDNA), CDO (oat cDNA), WG (wheat gDNA) and ABG (wheat gDNA) clones were provided from the Grain Genes probe repository (http://wheat.pw.usda.gov/ggpages/probes/index.html), Dr. Olin Anderson, USDA-ARS-WRRC, US. The ABLMC (Lolium multiflorum coleoptile cDNA) and the ABLGP (L. perenne gDNA) clones were provided by Dr. John Forster, La Trobe University, Australia, and Dr. Timothy Close, UC Riverside, USA, kindly provided the dehydrin clones. Dr. Fred Eickmeyer, SZ Steinach, Germany, provided the mapping data for the isozyme locus Acp-2. We gratefully acknowledge all probe contributors, and Øyvind Jørgensen, Kristin Bye Olsen and Torleiv Veum for excellent technical assistance. We thank Prof. Mike Gale for support and many useful discussions and suggestions in preparing this manuscript. This study was supported by the EU-project EGRAM (European Gramineae Mapping Project (contract No. BI04-CT97-2220), and grant no. 110733/112 from the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rognli.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alm, V., Fang, C., Busso, C.S. et al. A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108, 25–40 (2003). https://doi.org/10.1007/s00122-003-1399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1399-5

Keywords

Navigation