Skip to main content
Log in

A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech (Fagus sylvatica L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2004

Abstract

The genetic linkage map of European beech (Fagus sylvatica L.) that we report here is the first to our knowledge. Based on a total of 312 markers (28 RAPDs, 274 AFLPs, 10 SSRs) scored in 143 individuals from a F1 full-sib family. Two maps (one for each parent) were constructed according to a “two-way pseudo-testcross” mapping strategy. In the male map 119 markers could be clustered in 11 major groups (971 cM), while in the female map 132 markers were distributed in 12 major linkage groups (844 cM). In addition, four and one minor linkage groups (doublets and triplets) were obtained for the male and female map respectively. The two maps cover about 82% and 78% of the genome. Based on the position of 15 AFLP and 2 SSR loci segregating in both parents, seven homologous linkage groups could be identified. In the same pedigree we investigated the association with genetic markers of several quantitative traits: leaf area, leaf number and shape in 2 different years, specific leaf area, leaf carbon-isotope discrimination and tree height. A composite interval-mapping approach was used to estimate the number of QTLs, the amount of variation explained by each of them, and their position on the genetic linkage maps. Eight QTLs associated with leaf traits were found that explained between 15% and 35% of the trait variation, five on the female map and three on the male map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aldrich PR, Michler CH, Sun WL, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474

    Article  CAS  Google Scholar 

  • Arcade A, Anselin F, Faivre Rampant P, Lesage MC, Pâques LE, Prat D (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet 100:299–307

    CAS  Google Scholar 

  • Barreneche T, Bodenes C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glössl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5 S rRNA markers. Theor Appl Genet 97:1090–1103

    Article  CAS  Google Scholar 

  • Basten CJ,Weir BS, Zeng ZB (1994) Zmap-a QTL cartographer. In: Smith C, Gavora JS, Benkel B, Chesnais J, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) Proc 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software. Volume 22. 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada, pp 65–66

  • Basten CJ,Weir BS, Zeng ZB (2002) QTL cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh, North Carolina

  • Beavis WD (1995) The power and deceit of QTL experiments: lessons from comparative QTL studies. Proc 49th Annu Corn and Sorghum Industry Res Conf 1994:304–312

    Google Scholar 

  • Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in Popolus. IV. Mapping QTLs with large effects on growth, form and phenology traits in a forest tree. Genetics 139:963–973

    CAS  PubMed  Google Scholar 

  • Brendel O, Pot D, Plomion C, Rozenber P, Guehl JM (2002) Genetic parameters and QTL analysis of δ 13 C and ring width in maritime pine. Plant Cell Environ 25:945–953

    Article  CAS  Google Scholar 

  • Bucci G, Raddi S, Vendramin GG, Leonardi S, Giannini R Menozzi P (1999) Aspetti genetici del faggio in Italia. In “Funzionalità dell’ecosistema faggeta” (a cura di G. Scarascia Mugnozza), Edagricole, Bologna pp 35–69

  • Byrne M, Murrell JC, Owen V, Kriedemann P, Williams ER, Moran GF (1997) Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet 93:674–681

    Article  Google Scholar 

  • Casasoli M, Mattioni C, Cherubini M, Villani F (2001) A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor Appl Genet 102:1190–1199

    CAS  Google Scholar 

  • Ceroni M, Leonardi S, Piovani P, Menozzi P (1997) Incrocio diallelico in faggio: obiettivi, metodologie, primi risultati. Monti e Boschi 48:46–51

    Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Van Slycken J, Van Mantagu M, Boerjan W (2001) Dense genetic linkage maps of three populus species (Populus deltoids, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    CAS  PubMed  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Costa P, Pot D, Bubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Cervera MT, Remington DL, Plomion C (2000) A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theor Appl Genet 100:39–48

    CAS  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen, and corrections factors for mass spectrometric analysis of carbone dioxide. Geochim Cosmochim Ac 12:133–149

    CAS  Google Scholar 

  • Di Masso E (1999) Fenologia e marcatori genetici in Fagus sylvatica in una popolazione dell’Appennino settentrionale. Dipartimento di Scienze Ambientali, Università di Parma, PhD thesis

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    CAS  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw Jr HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–37

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff R (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214

    CAS  PubMed  Google Scholar 

  • Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    CAS  PubMed  Google Scholar 

  • Isabel N, Beaulieu J, Theriault P, Bousquet J (1999) Direct evidence for biased gene diversity estimates from dominant amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483

    Article  Google Scholar 

  • Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush. Theor Appl Genet 102:1142–1151

    Article  CAS  Google Scholar 

  • Johnsen KH, Flanagan LB, Huber DA, Major JE (1999) Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from half-diallel mating-system design using field-grown trees. Can J For Res 29:1727–1735

    Article  Google Scholar 

  • Kampfer S, Lexer C, Glössi J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    CAS  Google Scholar 

  • Kaya Z, Sewell MM, Neale D (1999) Identification of quantitative trait loci influencing annual height- and diameter-increment growth in loblolly pine (Pinus taeda L.). Theor Appl Genet 98:586–592

    Article  CAS  Google Scholar 

  • Kondo T, Terada K,·Hayashi E, Kuramoto N, Okamura M, Kawasaki H (2001) RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii). Theor Appl Genet 102:871–875

    Article  Google Scholar 

  • Kubisiak TL, Hebard FV, Nelson CD, Zhang J, Bernatzky R, Huang H, Anagnostakis SL, Doudrick RL (1997) Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87:751–759

    CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P et al. (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill). Mol Breed 11:127–136

    Article  CAS  Google Scholar 

  • Marques CM, Araújo, Ferreira JG, Whetten R, O’Malley DM, Liu BH, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737

    Article  CAS  Google Scholar 

  • Ohri D, Ahuja MR (1991) Giemsa C-banding in Fagus sylvatica L., Betula pendula Roth and Populus tremula L. Silvae Genet 40:72–75

    Google Scholar 

  • Parkhurst DF, Loucks DL (1972) Optimal leaf size in relation to environment. J Ecol 60:5505–5537

    Google Scholar 

  • Pastorelli R, Smulders MJM, Van’t Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterisation of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78

    Article  CAS  Google Scholar 

  • Plomion C, Durel CE, O’Malley D (1996) Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet 93:849–858

    CAS  Google Scholar 

  • Scotti I, Paglia G, Magni F, Morgante M (1999) Microsatellite markers as a tool for the detection of intra- and interpopulational genetic structure. In: Gillet EM (ed) Which marker for which purpose? http://webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm

  • Sewell MM, Bassoni DL, Megraw RA, Wheeler NC (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101:1273–1281

    Google Scholar 

  • Sewell MM, Davis MF, Tuskin GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104:214–222

    Article  Google Scholar 

  • Silim SN, Guy RD, Patterson TB, Livingston NJ (2001) Plasticity in water-use efficiency of Picea sitchensis, P. glauca and their natural hybrids. Oecologia 128:317–325

    Article  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Southern EM (1979) Measurement of DNA length by electrophoresis. Anal Biochem 100:319–323

    CAS  PubMed  Google Scholar 

  • Sun ZJ, Livingston NJ, Guy RD, Ethier GJ (1996) Stable carbon isotopes as indicators of increased water use efficiency and productivity in white spruce [Picea glauca (Moench) Voss] seedlings. Plant Cell Environ 19:887–894

    Google Scholar 

  • Teissier du Cros E, Le Tacon F, Nepveu G, Pardè J, Perrin R, Timbal J (1981) Le hetre, INRA Department des Reserches Forestieres, Paris

  • Troggio M, Kubisiak TL, Bucci G, Menozzi P (2001) Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations. Can J For Res 31:1456–1461

    Article  CAS  Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105:277–288

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, Kremer A (1997) Quantitative trait dissection analysis in Eucalyptus using RAPD markers. 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet 95:597–608

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–14

    CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA plymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  Google Scholar 

  • Wu R, Bradshaw JR HD, Stettler RF (1997) Molecular genetics of growth and development in Populus (Salicaceae). V. Mapping quantitative trait loci affecting leaf variation. Am J Bot 84:143–153

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first two authors contributed equally to the work. This research was supported by the European Union (QLRT-1999-01210, DYNABEECH) and the project M.U.R.S.T. COFIN2000 (Coordinator: Prof. Marco Borghetti). We declare that the experiments comply with the current laws of Italy where the experiments were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Menozzi.

Additional information

Communicated by D. B. Neale

An erratum to this article is available at http://dx.doi.org/10.1007/s00122-003-1583-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalfi, M., Troggio, M., Piovani, P. et al. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech (Fagus sylvatica L.). Theor Appl Genet 108, 433–441 (2004). https://doi.org/10.1007/s00122-003-1461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1461-3

Keywords

Navigation