Skip to main content
Log in

Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Simple sequence repeat (SSR) markers from Quercus and Castanea were used for comparative mapping between Quercus robur (L.) and Castanea sativa (Mill.). We tested the transferability of SSRs developed in Quercus to Castanea and vice-versa. In total, 47% (25) of the Quercus SSRs and 63% (19) of the Castanea SSRs showed a strong amplification product in the non-source species. From these 44 putative comparative anchor tags, 19 (15 from Quercus and 4 from Castanea) were integrated in two previously established genetic linkage maps for the two genera. SSR loci were sequenced to confirm the orthology of the markers. The combined information from both genetic mapping and sequence analysis were used to determine the homeology between seven linkage groups, aligned on the basis of pairs or triplets of common markers, while two additional groups were matched using a single microsatellite marker. Orthologous loci identified between Q. robur and C. sativa will be useful as anchor loci for comparative mapping studies within the Fagaceae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a, b
Fig. 2

Similar content being viewed by others

References

  • Aldrich PR, Michler CH, Sun W, Romero-Severson J (2002) Microsatellite markers for Northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474

    Article  CAS  Google Scholar 

  • Barreneche T, Bodenes C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glössl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Genet 97:1090–1103

    Article  CAS  Google Scholar 

  • Botta R, Akkak A, Marioni D, Bounous G, Kampfer S, Steinkellner H, Lexer C (1999) Evaluation of microsatellite markers for characterizing chestnut cultivars. Acta Hort 494:277–282

    CAS  Google Scholar 

  • Brown GR, Kadel III EE, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809

    Google Scholar 

  • Buck E, Hadonou M, James C, Blakesley D, Russell K (2003) Isolation and characterisation of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241

    Article  CAS  Google Scholar 

  • Byrne M, Marquez-Garcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341

    CAS  Google Scholar 

  • Casasoli M, Mattioni C, Cherubini M, Villani F (2001) A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor Appl Genet 102:1190–1199

    CAS  Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmão J, Liu BH, Hostyn V, Slycken JV, van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three populus species (Populus deltoids, P.nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    CAS  PubMed  Google Scholar 

  • Chagné D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed (in press)

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  CAS  PubMed  Google Scholar 

  • Devey ME, Sewell MM, Uren TL, Neale DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662

    CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    CAS  PubMed  Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 101:301–308

    Article  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica L. Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    CAS  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and saplings parentage in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627

    Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    CAS  Google Scholar 

  • Fisher PJ, Richardson TE, Gardner RC (1998) Characteristics of single- and multi-copy microsatellites from Pinus radiata. Theor Appl Genet 96:969–979

    CAS  Google Scholar 

  • Freeling M (2001) Grasses as a single genetic system. Reassessment 2001. Plant Physiol 125:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    CAS  Google Scholar 

  • Karhu A, Dieterich JH, Savolainen O (2000) Rapid expansion of microsatellite sequences in Pines. Mol Biol Evol 17:259–265

    CAS  PubMed  Google Scholar 

  • Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    CAS  Google Scholar 

  • Kijas JMH, Fowler JCS, Thomas MR (1995) An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38:349–355

    CAS  PubMed  Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  CAS  PubMed  Google Scholar 

  • Kutil BL, Williams CG (2001) Triplet-repeat microsatellite shared among hard and soft pines. J Hered 92:327–332

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lexer 1999 Application of microsatellite markers to genetic map construction and genetic analysis of forest seed material in Oaks (Quercus spp). PhD Thesis, Universität für Bodenkultur, Vienna, Austria

  • Manos PS, Steele KP (1997) Phylogenetic analysis of “higher” Hamamelidaea based on plastid sequence data. Am J Bot 84:1407–1419

    CAS  Google Scholar 

  • Manos PS, Zhe-Kun Zhou, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379

    Article  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill). Mol Breed 11:127–136

    Article  CAS  Google Scholar 

  • Marques CM, Brondani RPV, Grattapaglia D, Sederoff R (2002) Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor Appl Genet 105:474–478

    Article  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea-variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nature Genet 30:194–200

    CAS  PubMed  Google Scholar 

  • Nadeau JH, Sankoff D (1998) Counting on comparative maps. Trends Genet 14:495–501

    CAS  PubMed  Google Scholar 

  • Orti G, Pearse DE, Avise JC (1997) Phylogenetic assessment of length variation at a microsatellite locus. Proc Natl Acad Sci USA 94:10745–10749

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    CAS  PubMed  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102:689–694

    Article  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Rajora OP, Rahman MH, Dayanandan S, Mosseler A (2001) Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Mol Gen Genet 264:871–882

    CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Planschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rossetto M, McNally J, Henry RJ (2002) Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet 104:61–66

    CAS  Google Scholar 

  • Schmidt R (2000) Synteny: recent advances and future prospects. Curr Plant Biol 3:97–102

    Article  CAS  Google Scholar 

  • Scotti I, Magni F, Paglia GP, Morgante M (2002) Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor Appl Genet 106:40–50

    CAS  PubMed  Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330

    CAS  PubMed  Google Scholar 

  • Sheperd M, Cross M, Maguire TL, Dieters MJ, Williams CG, Henry RJ (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827

    CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    CAS  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997a) Identification and characterization of (GA/CT)n microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner H, Lexer C, Turetschek E, Glössl J (1997b) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194

    CAS  Google Scholar 

  • Streiff R, Labbé T, Bacilieri R, Steinkellner H, Glössl J, Kremer A (1998) Within population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl assessed with isozymes and microsatellites. Mol Ecol 7:317–328

    Article  Google Scholar 

  • Taylor JS, Durkin JMH, Breden F (1999) The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol Biol Evol 16:567–572

    CAS  PubMed  Google Scholar 

  • Van Treuren R, Kuittinen H, Kärkkäinen K, Baena-Gonzalez E, Savolainen O (1997) Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol 14:220–229

    PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1-6

    CAS  Google Scholar 

  • Whitton J, Rieseberg LH, Ungerer MC (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    CAS  Google Scholar 

  • Young ET, Sloan JS, van Riper K (2000) Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154:1053–1068

    CAS  PubMed  Google Scholar 

  • Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Mariette for helpful suggestions and fruitful discussions concerning microsatellite analysis; D. Chagné for critical comments on this manuscript; J. Romero-Sevenson for sharing the Quercus rubra primers (quru primers). This work was supported by the EU research project “CASCADE”(EVK2-CT-1999–00006). The authors declare that the experiments conducted for this publication comply with the current laws of France, Italy and UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kremer.

Additional information

Communicated by D.B. Neale

This paper is dedicated to the memory of Paulo Costa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreneche, T., Casasoli, M., Russell, K. et al. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108, 558–566 (2004). https://doi.org/10.1007/s00122-003-1462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1462-2

Keywords

Navigation