Skip to main content

Advertisement

Log in

Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Using barley and wheat expressed sequence tags as well as rice genomic sequence and mapping information, we revisited the genomic region encompassing the self-incompatibility (SI) locus Z on rye chromosome 2RL applying a comparative approach. We were able to arrange 12 novel sequence-tagged site (STS) markers around Z, spanning a genetic distance of 32.3 cM, with the closest flanking markers mapping at a distance of 0.5 cM and 1.0 cM from Z, respectively, and one marker cosegregating with Z, in a testcross population of 204 progeny. Two overlapping rice bacterial artifical chromosomes (BACs), OSJNBa0070O11 and OSJNBa0010D21, were found to carry rice orthologs of the three rye STS markers from the 1.5-cM interval encompassing Z. The STS-marker orthologs on these rice BACs span less than 125,000 bp of the rice genome. The STS marker TC116908 cosegregated with Z in a mapping population and revealed a high degree of polymorphism among a random sample of rye plants of various origin. TC116908 was shown via Southern hybridization to correspond to gene no. 10 (OSJNBa0070O11.10) on rice BAC OSJNBa0070O11. Reverse transcription-PCR with a TC116908-specific primer pair resulted in the amplification of a fragment of the expected size from the rye pistil but not from leaf cDNA. OSJNBa0070O11.10 was found to show a highly significant sequence similarity to AtUBP22, a ubiquitin-specific protease (UBP). TC116908 likely represents a putative UBP gene that is specifically expressed in rye pistils and cosegregates with Z. Given that the ubiquitination of proteins is emerging as a general mechanism involved in different SI systems of plants, TC116908 appears to be a promising target for further investigation with respect to its relation to the SI system of the grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Bian XY (2001) Towards cloning the self-incompatibility genes from Phalaris coerulescens. PhD thesis, University of Adelaide, Australia

  • Brewbaker JL (1967) The distribution and significance of binucleate and trinucleate pollen grains in the angiosperms. Am J Bot 54:1069–1083

    Article  Google Scholar 

  • Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    PubMed  CAS  Google Scholar 

  • Chu YE, Morishima H, Oka HI (1969). Partial self-incompatibility found in Oryza perennis subsp. barthii. Jpn J Genet 44:225–229

    Article  Google Scholar 

  • D’Andrea A, Pellman D (1998) Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 33:337–352

    Article  PubMed  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  PubMed  CAS  Google Scholar 

  • Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA (2002) Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 161:825–834

    PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (2003) Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci 8:598–605

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998). Plant comparative genetics after 10 years. Science 282:656–658

    Article  PubMed  CAS  Google Scholar 

  • Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano M, Sasaki T, Keller B (1998) Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome 41:328–336

    PubMed  CAS  Google Scholar 

  • Gertz A, Wricke G (1989): Linkage between the incompatibility locus Z and a β-glucosidase locus in rye. Plant Breed 102:255–259

    Article  Google Scholar 

  • Gewies A, Grimm S (2003) UBP41 is a proapoptotic ubiquitin-specific protease. Cancer Res 63:682–688

    PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gottwald S, Stein N, Börner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436

    Article  PubMed  CAS  Google Scholar 

  • Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58

    Article  PubMed  CAS  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Hadari T, Warms JV, Rose IA, Hershko A (1992) A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation. J Biol Chem 267:719–727

    PubMed  CAS  Google Scholar 

  • Hayman DL, Richter J (1992) Mutations affecting self-incompatibility in Phalaris coerulescens Desf. (Poaceae). Heredity 68: 495–503

    Article  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Hiscock SJ, McInnis SM (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–613

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi Y (2003) A Rice Full-Length cDNA Consortium National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team Foundation of Advancement of International Science Genome Sequencing and Analysis Group RIKEN Collection: mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T (1995) Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res 23:2729–2733

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Park KC, Chung SS, Bang O, Chung CH (2003) Deubiquitinating enzymes as cellular regulators. J Biochem 134:9–18

    Article  PubMed  CAS  Google Scholar 

  • Leach CR (1988) Detection and estimation of linkage for a co-dominant structural gene locus linked to a gametophytic self-incompatibility locus. Theor Appl Genet 75:882–888

    Google Scholar 

  • Leach CR, Hayman DL (1987) The incompatibility loci as indicators of conserved groups in the Poaceae. Heredity 58:303–305

    Article  Google Scholar 

  • Lundqvist A (1956): Self-incompatibility in rye. I. Genetic control in the diploid. Hereditas 42:293–348

    Article  Google Scholar 

  • Lundqvist A (1961) A rapid method for the analysis of incompatibilities in the grasses. Hereditas 47:705–707

    Article  Google Scholar 

  • Manly KF, Cudmore Jr RH, Meer JM (2001) map manager qtx, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Miftahudin, Scoles GJ, Gustafson JP (2004) Development of PCR-based codominant markers flanking the Alt3 gene in rye. Genome 47:231–238

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Nayar NM (1967) Prevalence of self-incompatibility in 0. barthii Chev.; its bearing on the evolution of rice and related taxa. Genetica 38:521–527

    Article  Google Scholar 

  • Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 3:144–152

    Google Scholar 

  • Qi X, Stam P,Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394

    Article  PubMed  CAS  Google Scholar 

  • Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:582–595

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Stevens WL (1942) Accuracy of mutation rates. J Genet 43:301–307

    Article  Google Scholar 

  • Stone SL, Anderson EM, Mullen RT, Goring DR (2003) ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 15:885–898

    Article  PubMed  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390

    Article  PubMed  CAS  Google Scholar 

  • Trang QS, Wricke G, Weber WE (1982) Number of alleles at the incompatibility loci in Secale cereale L. Theor Appl Genet 63:245–248

    Article  PubMed  CAS  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) joinmap ver. 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2002) mapchart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:7–78

    Article  Google Scholar 

  • Voylokov AV, Korzun V, Börner A (1998) Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theor Appl Genet 97:143–157

    Article  Google Scholar 

  • Wricke G (1978) Pseudo-Selbstkompatibilität beim Roggen und ihre Ausnutzung in der Züchtung. Z Pflanzenzuecht 81:140–148

    Google Scholar 

  • Wricke G, Wehling P (1985): Linkage between an incompatibility locus and a peroxidase locus (Prx7) in rye. Theor Appl Genet 71:289–291

    PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Yang Y, Jong AY (1990) Mini-prep in ten minutes. Biotechniques 8:172–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft (project WE-2079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wehling.

Additional information

Communicated by Q. Zhang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackauf, B., Wehling, P. Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110, 832–845 (2005). https://doi.org/10.1007/s00122-004-1869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1869-4

Keywords

Navigation