Skip to main content
Log in

A composite linkage map from two crosses for the species complex Picea mariana × Picea rubens and analysis of synteny with other Pinaceae

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Four individual linkage maps were constructed from two crosses for the species complex Picea mariana (Mill.) B.S.P. × Picea rubens Sarg in order to integrate their information into a composite map and to compare with other Pinaceae. For all individual linkage maps, 12 major linkage groups were recovered with 306 markers per map on average. Before building the composite linkage map, the common male parent between the two crosses made it possible to construct a reference linkage map to validate the relative position of homologous markers. The final composite map had a length of 2,319 cM (Haldane) and contained a total of 1,124 positioned markers, including 1,014 AFLPs, 3 RAPDs, 53 SSRs, and 54 ESTPs, assembled into 12 major linkage groups. Marker density of the composite map was statistically homogenous and was much higher (one marker every 2.1 cM) than that of the individual linkage maps (one marker every 5.7 to 7.1 cM). Synteny was well conserved between individual, reference, and composite linkage maps and 94% of homologous markers were colinear between the reference and composite maps. The combined information from the two crosses increased by about 24% the number of anchor markers compared to the information from any single cross. With a total number of 107 anchor markers (SSRs and ESTPs), the composite linkage map is a useful starting point for large-scale genome comparisons at the intergeneric level in the Pinaceae. Comparisons of this map with those in Pinus and Pseudotsuga allowed the identification of one breakdown in synteny where one linkage group homoeologous to both Picea and Pinus corresponded to two linkage groups in Pseudotsuga. Implications for the evolution of the Pinaceae genome are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acheré V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, Favre JM (2004) A saturated consensus linkage map of Picea abies including AFLP, SSR, STS, 5S rDNA and morphological markers. Theor Appl Genet 108:1602–1613

    PubMed  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet 82:636–644

    Article  CAS  Google Scholar 

  • Besnard G, Acheré V, Faivre-Rampant P, Favre JM, Jeandroz S (2003) A set of cross-species amplifying microsatellite markers developed from DNA sequence databanks in Picea (Pinaceae). Mol Ecol Notes 3:380–383

    Article  CAS  Google Scholar 

  • Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Gen Genet 267:338–347

    CAS  Google Scholar 

  • Brown GR, Kadel EE III, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (P. taeda L.) for integrating pine genomics. Genetics 159:799–809

    PubMed  CAS  Google Scholar 

  • Bucci G, Kubisiak TL, Nance WL, Menozzi P (1997) A population consensus partial linkage map of Picea abies Karst based on RAPD markers. Theor Appl Genet 95:643–654

    Article  CAS  Google Scholar 

  • Cato SA, Corbett GE, Richardson TE (1999) Evaluation of AFLP for genetic mapping in Pinus radiata D. Don. Mol Breed 5:275–281

    Article  CAS  Google Scholar 

  • Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, Deatrick J, De Vienne D (1996) A composite map of expressed sequences in maize. Genome 39:418–432

    CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu B-H, Hostyn V, van Slycken J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    PubMed  CAS  Google Scholar 

  • Chagné D, Lalanne C, Madur D, Kumar S, Frigerio JM, Krier C, Decroocq S, Savouré A, Bou-Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C (2002) A high density genetic map of maritime pine based on AFLPs. Ann For Sci 59:627–636

    Article  Google Scholar 

  • Chagné D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195

    Article  Google Scholar 

  • Chagné D, Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera M-T, Vendramin GG, Garcia V, Frigerio JM, Echt C, Richardson T, Plomion C (2004) Cross species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109:1204–1214

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    PubMed  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Costa P, Pot D, Dubos C, Frigerio J-M, Pionneau C, Bodénès C, Bertocchi E, Cervera M, Remington DL, Plomion C (2000) A genetic map of maritime pine based on AFLP, RAPD and protein markers. Theor Appl Genet 100:39–48

    Article  CAS  Google Scholar 

  • Devey ME, Fiddler TA, Liu B-H, Knapp SJ, Neale DB (1994) A RFLP linkage map for loblolly pine based on three-generation outbred pedigree. Theor Appl Genet 88:273–278

    Article  CAS  Google Scholar 

  • Devey MD, Sewell MM, Uren TL, Neale D (1999) Comparative mapping in loblolly pine and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662

    Article  CAS  Google Scholar 

  • Devey ME, Carson SD, Nolan MF, Matheson AC, Te Riini C, Hohepa J (2004) QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection. Theor Appl Genet 108:516–524

    Article  PubMed  CAS  Google Scholar 

  • Gentzbittel L, Vear F, Zhang Y-X, Bervillé A, Nicolas P (1995) Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 90:1079–1086

    Article  CAS  Google Scholar 

  • Gosselin I, Zhou Y, Bousquet J, Isabel N (2002) Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet 104:987–997

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Guillet-Claude C, Isabel N, Pelgas B, Bousquet J (2004) The evolutionary implications of knox-Igene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Mol Biol Evol 21:2232–2245

    Article  PubMed  CAS  Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between loci of linked factors. J Genet 8:299–309

    Google Scholar 

  • Hanson WD (1959) The Breakup of initial linkage blocks under selected mating systems. Genetics 44:857–868

    PubMed  CAS  Google Scholar 

  • Harry DE, Temesgen B, Neale D (1998) Codominant PCR-based markers of Pinus taeda developed from mapped cDNA clones. Theor Appl Genet 97:327–336

    Article  CAS  Google Scholar 

  • Hauge BM, Hanley SM, Cartinhour S, Cherry JM, Goodman HM, Koornneef M, Stam P, Chang C, Kempin C, Medrano L, Meyerowitz EM (1993). An integrated genetic/physical map of the Arabidopsis thaliana genome. Plant J 3:745–754

    Article  CAS  Google Scholar 

  • Hayashi E, Kondo T, Terada K, Kuramoto N, Goto Y, Okamura M, Kawasaki (2001) Linkage map of Japanese black pine based on AFLP and RAPD markers including markers linked to resistance against the pine needle gall midge. Theor Appl Genet 102:871–875

    Article  CAS  Google Scholar 

  • Hodgetts RB, Aleksiuk MA, Brown A, Clarke C, Macdonald E, Nadeem S, Khasa D (2001) Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor Appl Genet 102:1252–1258

    Article  CAS  Google Scholar 

  • Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S (2003) Efficient construction of high-density linkage map an dits application to QTL analysis in barley. Theor Appl Genet 107:806–813

    Article  PubMed  CAS  Google Scholar 

  • Hulbert S, Ilott T, Legg EJ, Lincoln S, Lander E, Michelmore R (1988) Genetic analysis of the fungus Bremia lactucae, using restriction length polymorphism. Genetics 120:947–958

    PubMed  CAS  Google Scholar 

  • Isabel N, Beaulieu J, Bousquet J (1995) Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc Natl Acad Sci USA 92:6369–6373

    PubMed  CAS  Google Scholar 

  • Jany JL, Bousquet J, Khasa DP (2003) Microsatellite markers for Hebeloma species developed from expressed sequence tags in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Ecol Notes 3:659–661

    Article  CAS  Google Scholar 

  • Jermstad KD, Bassoni DL, Wheeler NC, Neale DB (1998) A sex-averaged linkage map in coastal Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) based on RFLP and RAPD markers. Theor Appl Genet 97:762–770

    Article  CAS  Google Scholar 

  • Karhu A, Dieterich JH, Savolainen O (2000) Rapid expansion of microsatellite sequences in pines. Mol Biol Evol 17:259–265

    PubMed  CAS  Google Scholar 

  • Knox MR, Ellis THN (2002) Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics 162:861–873

    PubMed  CAS  Google Scholar 

  • Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR, O’Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kowalski S, Lan T, Feldmann K, Paterson A (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510

    PubMed  CAS  Google Scholar 

  • Krutovskii KV, Vollmer SS, Sorensen FC, Adams WT, Knapp SJ, Strauss SH (1998) RAPD genome maps of Douglas fir. J Hered 89:197–205

    Article  CAS  Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    Article  PubMed  CAS  Google Scholar 

  • Kubisiak TL, Nelson CD, Nance WL, Stine M (1995) RAPD linkage mapping in a longleaf pine × slash pine F1 family. Theor Appl Genet 90:1119–1127

    Article  CAS  Google Scholar 

  • Kumar S, Spelman RJ, Garrick DJ, Richardson TE, Lousberg M, Wilcox PL (2000) Multiple marker mapping of wood density loci in an outbred pedigree of radiata pine. Theor Appl Genet 100:926–933

    Article  Google Scholar 

  • Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Hum Genet 24:842–845

    Google Scholar 

  • Lerceteau E, Plomion C, Andresson B (2001) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458

    Article  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Article  PubMed  CAS  Google Scholar 

  • Liu B-H (1998) Statistical genomics: linkage mapping and QTL analysis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Livingstone K, Rieseberg L (2003) Chromosomal evolution and speciation: a recombination-based approach. New Physiol 161:107–112

    Article  CAS  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Marques CM, Araujo JA, Ferreira JG, Whetten R, O’Malley DM, Liu B-H, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737

    Article  CAS  Google Scholar 

  • Mukai Y, Suyama Y, Tsumura Y, Kawahara T, Yoshimaru H, Hondo T, Tomaru N, Kuramoto N, Murai M (1995) A linkage map for sugi (Cryptomeria japonica) based on RFLP, RAPD, and isozyme loci. Theor Appl Genet 90:835–840

    Article  CAS  Google Scholar 

  • Myburg AA, Remington DL, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotech 30:348–357

    PubMed  CAS  Google Scholar 

  • Myburg AA, Griffin AR, Sederoff RR, Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet 107:1028–1042

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nelson CD, Kubisiak TL, Stine M, Nance WL (1994) A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNAs. J Hered 85:433–439

    CAS  Google Scholar 

  • Nikaido AM, Ujino T, Iwata H, Yoshimura K, Yoshimura H, Suyama Y, Murai M, Nagasaka K, Tsumura Y (2000) AFLP and CAPS linkage maps of Cryptomeria Japonica. Theor Appl Genet 100:825–831

    Article  CAS  Google Scholar 

  • Orr HA (1996) Dobzhansky, Bateson, and the genetics of speciation. Genetics 144:1331–1335

    PubMed  CAS  Google Scholar 

  • Paglia G, Morgante M (1998) PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed 4:173–177

    Article  CAS  Google Scholar 

  • Paglia P, Olivieri AM, Morgante M (1998) Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.). Mol Gen Genet 258:466–478

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of Quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Pelgas B, Isabel N, Bousquet J (2004) Efficient screening for expressed sequence tag polymorphisms (ESTPs) by DNA pool sequencing and denaturing gradient gel electrophoresis (DGGE) in spruces. Mol Breed 3:263–279

    Article  Google Scholar 

  • Perron M, Bousquet J (1997) Natural hybridization between black spruce and red spruce. Mol Ecol 6:725–734

    Article  Google Scholar 

  • Perron M, Gordon AG, Bousquet J (1995) Species-specific RAPD fingerprints for the closely related Picea mariana and P. rubens. Theor Appl Genet 91:142–149

    Article  CAS  Google Scholar 

  • Perron M, Perry D, Andalo C, Bousquet J (2000) Evidence from sequence-tagged-site markers of a recent progenitor-derivative species pair in conifers. Proc Natl Acad Sci USA 97:11331–11336

    Article  PubMed  CAS  Google Scholar 

  • Perry DJ, Bousquet J (1998a) Sequence-tagged-site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. Genetics 149:1089–1098

    PubMed  CAS  Google Scholar 

  • Perry DJ, Bousquet J (1998b) Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers. Theor Appl Genet 97:735–743

    Article  CAS  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419

    Article  PubMed  CAS  Google Scholar 

  • Plomion C, O’Malley DM (1996) Recombination rate differences for pollen parents and seed parents in pine. Heredity 77:341–350

    CAS  Google Scholar 

  • Plomion C, O’Malley DM, Durel CE (1995) Genomic analysis in maritime pine (Pinus pinaster): Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor Appl Genet 90:1028–1034

    Article  CAS  Google Scholar 

  • Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394

    CAS  PubMed  Google Scholar 

  • Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384

    Article  CAS  Google Scholar 

  • Rajora OP, Rahman MH, Dayanandan S, Mosseler A (2001) Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Mol Gen Genet 264:871–882

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Buerkle CA (2002) Genetic mapping in hybrid zones. Am Nat 159:S36–S50

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Linder CR, Seiler GJ (1995) Chromosomal and genic barriers to introgression in Helianthus. Genetics 141:1163–1171

    PubMed  CAS  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621

    PubMed  CAS  Google Scholar 

  • Rouppe van der Voort JN, van Zandvoort P, van Eck HJ, Folkertsma RT, Hutten RC, Draaistra J, Gommers FJ, Jacobsen E, Helder J, Bakker J (1997) Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255:438–447

    Article  PubMed  CAS  Google Scholar 

  • Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Piégu B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucl Acids Res 30:2316–2328

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Piégu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oriza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    Article  PubMed  CAS  Google Scholar 

  • Schiex T, Gaspin C (1997) CARTHAGENE: constructing and joining maximum likelihood genetic maps. Proc Int Conf Intell Syst Mol Biol 5:258–67

    PubMed  CAS  Google Scholar 

  • Scotti I, Magni F, Fink R, Powell W, Binelli G, Hedley PE (2000) Microsatellite repeats are not randomly distributed within Norway spruce (Picea abies K.) expressed sequences. Genome 43:41–46

    Article  PubMed  CAS  Google Scholar 

  • Scotti I, Magni F, Paglia G, Morgante M (2002a) Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) through dot-blot selection. Theor Appl Genet 104:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Scotti I, Magni F, Paglia G, Morgante M (2002b) Trinucleotide microsatellites in Norway spruce (Picea abies K.): Their features and the development of molecular markers. Theor Appl Genet 106:40–50

    PubMed  CAS  Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330

    PubMed  CAS  Google Scholar 

  • Shepherd M, Cross M, Dieters MJ, Henry R (2003) Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Theor Appl Genet 106:1409–1419

    PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry, 4th edn. W. H. Freeman, New York

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, Tsumura Y (2003) A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568

    PubMed  CAS  Google Scholar 

  • Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102:664–675

    Article  CAS  Google Scholar 

  • Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y (1997) Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet 94:764–772

    Article  CAS  Google Scholar 

  • Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Bio/Technology 10:686–690

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Joinmap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands, Website: http://www.joinmap.nl

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Luebberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    CAS  Google Scholar 

  • Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311–321

    Article  PubMed  CAS  Google Scholar 

  • Wu RL, Han YF, Hu JJ, Fang JJ, Li L, Li ML, Zeng Z-B (2000) An integrated genetic map of Populus deltoides based on amplified fragment length polymorphisms. Theor Appl Genet 100:1249–1256

    Article  CAS  Google Scholar 

  • Yin TM, Wang XR, Andersson B, Lerceteau-Köhler E (2003) Nearly complete genetic maps of Pinus sylvestris L. (Scots pine) constructed by AFLP marker analysis in a full-sib family. Theor Appl Genet 106:1075–1083

    PubMed  CAS  Google Scholar 

  • Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Gagnon, I. Gosselin, M. Lamothe, S. Plante, and S. Senneville (Univ. Laval and Canadian Forest Service) for their help and support in the laboratory, and with mapping and sequence analyses. We also thank R.K. Rutledge (Canadian Forest Service) for the gift of HAP3a and HAP3b from P. mariana. Finally, we thank P. Meirmans (Canadian Forest Service), O. Savolainen (University of Oulu, Finland) and two anonymous reviewers for their constructive comments on previous drafts of this manuscript. Pedigree material was developed by N.I. and J. Beaulieu (Canadian Forest Service) through a Canadian Biotechnology Strategy grant. This research was supported by a National Sciences and Engineering Research Council of Canada grant (Genomics Program) to J.B. and N.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Isabel.

Additional information

Communicated by O. Savolainen

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelgas, B., Bousquet, J., Beauseigle, S. et al. A composite linkage map from two crosses for the species complex Picea mariana × Picea rubens and analysis of synteny with other Pinaceae. Theor Appl Genet 111, 1466–1488 (2005). https://doi.org/10.1007/s00122-005-0068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0068-2

Keywords

Navigation