Skip to main content
Log in

Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza sativa spp. Nipponbare) genome sequence: sequencing of gap-specific fosmid clones uncovers new euchromatic portions of the genome

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The International Rice Genome Sequencing Project has recently announced the high-quality finished sequence that covers nearly 95% of the japonica rice genome representing 370 Mbp. Nevertheless, the current physical map of japonica rice contains 62 physical gaps corresponding to approximately 5% of the genome, that have not been identified/represented in the comprehensive array of publicly available BAC, PAC and other genomic library resources. Without finishing these gaps, it is impossible to identify the complete complement of genes encoded by rice genome and will also leave us ignorant of some 5% of the genome and its unknown functions. In this article, we report the construction and characterization of a tenfold redundant, 40 kbp insert fosmid library generated by random mechanical shearing. We demonstrated its utility in refining the physical map of rice by identifying and in silico mapping 22 gap-specific fosmid clones with particular emphasis on chromosomes 1, 2, 6, 7, 8, 9 and 10. Further sequencing of 12 of the gap-specific fosmid clones uncovered unique rice genome sequence that was not previously reported in the finished IRGSP sequence and emphasizes the need to complete finishing of the rice genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderson S (1981) Shotgun DNA sequencing using DNase I-generated fragments. Nucleic Acids Res 9:3015–3027

    Article  PubMed  CAS  Google Scholar 

  • Anjard C, Loomis WF, Dictyostelium Sequencing Consortium (2002) Evolutionary analyses of ABC transporters of Dictyostelium discoideum. Eukaryot Cell 1:643–52

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Katagiri S, Tanoue H, Tanaka R, Chiden Y, Saji S, Hamada M, Nakashima M, Okamoto M, Hayashi M, Yoshiki S, Karasawa W, Honda M, Ichikawa Y, Arita K, Ikeno M, Ohta T, Umehara Y, Matsumoto T, de Jong P, Sasaki T (2000) Construction and Characterization of Rice Genomic Libraries: PAC Library of Japonica Variety, Nipponbare and BAC Library of Indica Variety, Kasalath. Bull NIAR 14:41–49

    CAS  Google Scholar 

  • Bodenteich AS, Chissoe Y, Wang F, Roe BA (1994) Shotgun cloning as the strategy of choice to generate templates for high throughput dideoxynucleotide sequencing. In: Adams MD, Fields C, Venter C (eds) Automated DNA sequencing and analysis techniques. Academic, London, pp 42–50

    Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep coverage tomato BAC library and prospects toward developing of an STC framework for genome sequencing. Genome Res 10:129–136

    PubMed  CAS  Google Scholar 

  • Cavalieri LF, Rosenberg BH (1995) Shear degradation of deoxyribonucleic acid. J Am Chem Soc 81:5136–5139

    Article  Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  CAS  Google Scholar 

  • De Tomaso AW, Weissman IL (2003) Construction and characterization of large-insert genomic libraries (BAC and Fosmid) from the ascidian Botryllus schlosseri and initial physical mapping of a histocompatibility locus. Mar Biotechnol 5:103–115

    PubMed  Google Scholar 

  • Deininger PL (1983) Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal Biochem 129:216–223

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fitz-Gibbon S, Choi AJ, Miller JH, Stetter KO, Simon MI, Swanson R, Kim UJ (1997) A fosmid-based genomic map and identification of 474 genes of the hyperthermophilic archaeon Pyrobaculum aerophilum. Extremophiles 1:36–51

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JC, Boehrer DM, Garnes JA, Johnson W, Wong BS, Bergmann A, Eveleth GG, Langlosis RG, Carrano AV (1996) Construction and characterization of human chromosome 2 specific cosmid, Fosmid, and PAC clone libraries. Genomics 32:65–74

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, and Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100

    Article  PubMed  CAS  Google Scholar 

  • Hagan CE, Warren GJ (1982) Lethality of palindromic DNA and its use in selection of recombinanat plasmids. Gene 19:147–151

    Article  PubMed  CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, and Sasaki T (1998) A high density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Hirano T (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev 15:399–414

    Article  CAS  Google Scholar 

  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998a) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33(6):451–459

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL, Payne TL, Hecht JE (1998b) Identification of Candida albicans ALS2 and ALS4 and localization of als proteins to the fungal cell surface. J Bacteriol 189:5334–5343

    Google Scholar 

  • Hughes DS, Felbeck H, Stein JL (1997) A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Envion Microbiol 63:3494–3498

    CAS  Google Scholar 

  • International Rice Genome Sequencing Consortium (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Kang HK, Cox DW (1996) Tandem repeats 3′ of the IGHA genes in the human immunoglobulin heavy chain gene cluster. Genomics 35:189–195

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Saka M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 30:55–76

    Article  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kim UJ, Shizuya H, de jong P, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res 20:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Kim UJ, Shizuya H, Sainz J, Garnes J, Pulst SM, de Jong P, Simon MI (1995) Construction and utility of a human chromosome 22 specific fosmid library. Genet Anal 12:81–84

    PubMed  CAS  Google Scholar 

  • Kim CG, Fujiyama A, Saitou N (2003) Construction of a gorilla fosmid library and its PCR screening system. Genomics 82:571–574

    Article  PubMed  CAS  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J,Antonio BA, Shomura A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice inclusing 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Leem SH, Kouprina N, Grimwood J, Kim JH, Mullokandov M, Yoon YH, Chae JY, Morgan J, Lucas S, Richardson P, Detter C, Glavina T, Rubin E, Barrett JC, Larionov V (2004) Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements. Genome Res 14(2):239–246

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Searle SM, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglir L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME (2002) Apollo: a sequence annotation editor. Genome Biol 3:RESEARCH0082–2

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Wing RA (2003) An improved method for plant BAC library construction. In: Grotewold E (ed) Plant functional genomics: methods and protocols. methods in molecular biology. Humana Press Inc. Totowa, pp 3–19

    Chapter  Google Scholar 

  • Luo M, Wang Y-H, Frish D, Joobeaur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome(BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frish D, Goff SA, Dean RA, Wing RA (2000) Rice transposable elements:a survery of 73,000 seqeunce-tagged-connectors. Genome Res 10:982–990

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • Matysik J, Bhalu AB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Millikan DS, Felbeck H, Stein JL (1999) Identification and characterization of flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 65:3129–33

    PubMed  CAS  Google Scholar 

  • Oefner PJ, Hunicke-Smith SP, Chiang L, Dietrich F, Mulligan J, Davis RW (1996) Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. Nucleic Acids Res 24: 3879–3886

    Article  PubMed  CAS  Google Scholar 

  • Quiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schelper C (2002) First insights in to the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611

    Article  Google Scholar 

  • Ravin NV, Ravin VK (1999) Use of a llinear multicopy vector based on the mini-replicon of temperate coliphage N15 for cloning DNA with abnormal secondary structures. Nucleic Acids Res 1:e13

    Article  Google Scholar 

  • Razin SV, Loudinkova ES, Trifonov E, Scherrer K (2001) Non-clonability correlates with genome instability: a case study of unique DNA region. J Mol Biol 307:481–486

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, and Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1993). The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Dev 7:367–379

    Article  PubMed  CAS  Google Scholar 

  • Scroth GP, Ho PS (1995) Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res 23:1977–1983

    Article  PubMed  Google Scholar 

  • Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprints, markers and FPC V4.7. Genome Res 10:1772–1787

    Article  PubMed  CAS  Google Scholar 

  • Solovyev VV, Salamov AA, Lawrence CB (1995) Identification of human gene structure using linear discriminant functions and dynamic programming. Proc Int Conf Intell Syst Mol Biol 3:367–375

    PubMed  CAS  Google Scholar 

  • The Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569

    Google Scholar 

  • Thorstenson Y, Hunicke-Smith S, Oefner P, Davis R (1998) An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Res 8:848–855

    PubMed  CAS  Google Scholar 

  • Venter JC, Smith HO, Hood L (1996) A new strategy for genome sequencing. Nature 381:364–366

    Article  PubMed  CAS  Google Scholar 

  • Vergin KL, Urbach E, Stein JL, DeLong EF, Lanoil BD, Giovannoni SJ (1998) Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl Environ Microbiol 64:3075–3078

    PubMed  CAS  Google Scholar 

  • Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12:1434–1444

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Mizuro H, Hayashi- Tsugane M, Ito Y, Chiden Y, Fujisawa M, katagiri S, Saji S, Yoshiki S, Karasawa W, Yoshihara R, Hayashi A, Kobayashi H, Ito K, Hamada M, Okamoto M, Ikeno M, Ichikawa Y, Katayose Y, Yano M, Matsumoto T, Sasaki T (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36:720–730

    Article  PubMed  CAS  Google Scholar 

  • Yang TJ, Yu Y, Nah G, Atkins M, Lee S, Frisch DA, Wing RA (2003) Construction and utility of 10-kb libraries for efficient clone–gap closure for rice genome sequencing. Theor Appl Genet 107:652–660

    Article  PubMed  CAS  Google Scholar 

  • Yim Y-S, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod A. Wing.

Additional information

Communicated by Q. Zhang

Fosmid library reported here is publicly available from our web site http://www.genome.arizona.edu/orders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammiraju, J.S.S., Yu, Y., Luo, M. et al. Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza sativa spp. Nipponbare) genome sequence: sequencing of gap-specific fosmid clones uncovers new euchromatic portions of the genome. Theor Appl Genet 111, 1596–1607 (2005). https://doi.org/10.1007/s00122-005-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0091-3

Keywords

Navigation